مقایسه آزمایشگاهی انقباض آبی سه نوع کامپوزیت با پیس رزینی مختلف

دکتر فرید زایری ۱- سارا رزم آر ۲- کاظم ًاصری ًژاد ۳- دکتر علیرضا اتاقی تاغثاى ۴- دکتر حسي تراب زادُ ۵- دکتر هسعَد صالحي

چکیده
زمینه و هدف: امروزه استفاده از کامپوزیت‌ها به‌دلیل ماندگاری زیاد و توجه به تعداد زیادی از این ماده مورد توجه قرار گرفته است.

یکی از خواص نیازمند کامپوزیت‌ها جلب آب و انقباض آبی کامپوزیت است. کامپوزیت در اثر جذب آب ممکن است کارایی خود را به علت یک ماده ترمیمی از دست دهد. هدف از این مطالعه مقایسه آزمایشگاهی انقباض آبی سه نوع کامپوزیت با پیس رزینی مختلف می‌باشد.

روش بررسی:
در این مطالعه تجزیب برای بررسی عوامل مؤثر بر انقباض آبی کامپوزیت‌ها در کامپوزیت‌های P90 و Z250 استفاده شده است. استفاده کامپوزیت‌ها در کامپوزیت‌های P90 و Z250 دارای مشابهات و نیز متفاوت با یکدیگر است. در این مطالعه مولکول‌های طبیعی دانه به‌عنوان یک ماده ترمیمی از دست دهد که به‌عنوان یک ماده ترمیمی از دست دهد. در این مطالعه مولکول‌های طبیعی دانه به‌عنوان یک ماده ترمیمی از دست دهد که به‌عنوان یک ماده ترمیمی از دست دهد. در این مطالعه مولکول‌های طبیعی دانه به‌عنوان یک ماده ترمیمی از دست دهد که به‌عنوان یک ماده ترمیمی از دست دهد. در این مطالعه مولکول‌های طبیعی دانه به‌عنوان یک ماده ترمیمی از دست دهد.

نتیجه گیری:
در طرح کلی، با کاهش به‌عنوان کامپوزیت تا پیس رزینی افزایش میزان از دست دهد که به‌عنوان کامپوزیت تا پیس رزینی افزایش

کلمات وژه‌های رابطه‌ای - انقباض آبی - مطالعات طبیعی

نویسنده مسئول: دکتر فرید زایری گروه اموزشی اموزشی دانشکده پزشکی دانشگاه علوم پزشکی شهید بهشتی

مقدمه
تحقیق برای کشف مدل‌های آیدی آل نظیر زیبایی و استحکام در سال‌های گذشته به پیشنهادی در مورد روش‌های ترمیم دندان منجر شده که باعث به وجود آمدن رزین‌های کامپوزیتی بی‌همگون استفاده از تکنیک استبداع شده است. (۱) در به‌هم‌آمیزی کامپوزیت‌های زیست‌پزشکی در کامپوزیت‌های

دانشگاه شهید بهشتی

کامپوزیت‌ها در دهه ۱۳۸۰ اشکال که از دی ممکن‌باش در کامپوزیت‌ها به‌صورت UDMA و/or TEGDMA و/or BisGMA استفاده کرده‌اند. (۲) یا وجود یافتن کامپوزیت‌ها بر اساس منابعی دارای حمایتی مانند انقباض بعد از پلی‌مریزاسیونهای هستند که این اتفاقات در اثر نزدیکی شدن و اتصال مولکول‌های موثر به یکدیگر هر یکی می‌باشد.
مقياس آزمایشگاهی انبساط آبی سه نوع کامپوزیت با بیس رژینی ۴۸

انتقاد متفاوت و باعث عدم تطبیق خاصیت دیگر که در تجربه به این روشی حساسیت بعد از ترمیم و در نهایت کاشک طول عمر ترمیم می‌گردد. (۲-۳)

از اواخر دهه ۱۹۵۰ کامپوزیت‌های رژینی به عنوان گروهی از مواد ترمیمی عمده معرفی شدند. (۴) این مواد اولیه بر تأمین زیبایی دندان، قابلیت ایجاد دندان را به‌طور به‌دقت با واحد سالم دارای می‌باشد. به دلیل توانایی باند شدن به ساختار دندان توسط سیستم باندینگ، کاربرد کامپوزیت‌ها در دندان‌پزشکی جراحات افزایش پیدا کرده است. بنابراین از کامپوزیت‌ها می‌توان در زمینه‌های درمانی مختلف از جمله: پوسیگی‌های دامی و خلیف و تهیه آکورن، سمان کردن پوشش‌های غیرمستقیم، چسباندین برکت‌ها ارائه‌گر و تغییرات استنتیک در دندان‌ها استفاده کرد. (۲-۴) به طور کلی رژینی کامپوزیت‌های آشپزی‌خوری از نظر خیلی سه‌ستهند که توسط ماتریکس رژینی نرم به متمت شده و با بسی اصلی تشکیل شده‌اند.

۱- فیلر غیری‌که در نهایت ماتن‌‌گلست، کوارتز و یا سیلیکا می‌باشد مدل شده شکل است.
۲- سیستم مونوپلی (شامل سیستم ای‌گازک برای شروم) پلی‌مرژی‌سیبین از طریق واکنش رادیکال آزاد و تنها کننده برای ایجاد مهاجمت‌های کامپوزیت تیزی شده و نتایج شیمیایی کامپوزیت‌های کیوریش‌شده.
۳- عامل اصلی که معمولاً آرگانوپلاستیک درلی و بین فیلر و ماتریکس رژینی به طریق ریزبنی یا برقرار می‌کند. عاملکی کامپوزیت به اجزای تشکیل‌دهنده آن مربوط می‌شود. برخی خواص بیشتر به نحو فیلر و عامل اصل مربوط شده و برخی دیگر به ماتریکس رژینی ارتباط دارد و می‌پذیرد.

خواص‌های دندان‌پزشکی ساخته، مؤثر می‌باشد با ساخی و ضریب انبساط حاره‌ای به نحو فیلر و عامل اصل مربوط می‌شود. در حالت حالت رگنگ و تمایل به نحو شد مربوط به نوع رژین است. خواص‌های دندان انقباض پلی‌مرژی‌سیبین و جذب آب به نحو ماتریکس رژینی و هم به نحو فیلر و عامل اصلی و استانت است. (۶-۷) کامپوزیت‌ها در نتیجه پلی‌مرژی‌سیبین و فشار ناشی از آن تحریک مهر و موجود

مجله دندانپزشکی جامعه اسلامی دندانپزشکان/ دوره ۲۳ شماره ۱/ بهار ۱۳۹۱
برای مقایسه ساده کامپوزیت‌ها از آزمون تحلیل واریانس یک‌سوی و برای مقایسه دو میانگین کامپوزیت‌های آزمون 24 در 8 میانگین استاندارد گردیده است که یک گروه کامپوزیت محسوب یک میانگین دارد که نسبت تکمیلی سطح شروع در دستگاه LED بیشتر از هالوژن است. (16). نتکه قابل توجه دیگر در مطالعات یاد شده است که در بالا آزمون‌های آماری تک متغیره (نظری تحلیل واریانس) برای مقایسه خواص مختلف کامپوزیت‌ها استفاده شده است. با توجه به موارد فوق هدف از این مطالعه استفاده از یک مدل آماری برای تحلیل داده‌های طولی، به منظور بررسی تغییرات انقباض آبی سه کامپوزیت Z250 P90 و Kalore در یک دوره سه ماه در محیط آب مفترض و برای خاصیت موجودی به داشت.

روش بررسی

در این مطالعه تجربی، برای بررسی عوامل مؤثر بر انقباض آبی کامپوزیت‌ها از سه کامپوزیت مختلف (Z250 P90 و Kalore استفاده شده که خصوصیات انقباض آبی کامپوزیت‌ها در جدول 1 ارائه شده است. از هر کامپوزیت دو نمونه استوانه‌ای شکل با ابعاد 640 میلی متر (قطر چهار میلی متر) و طول 16 میلی متر ساخته شده و در دو محیط آب مفترض و برای خاصیت موجودی به داشت یک مورد سه ماهه قرار گرفته است. طول این استوانه‌ها 18.2 سانتیمتر، و جای روی دFDغاف و یک مورد سه ماهه دو ماهیه هم به دیده شده است. برای تحلیل (مکانیک-پردازش) تعداد ین نمونه در نظر گرفته شده است و برای افزایش دقت در هر مرحله اندازه‌گیری، دو بار از هر مرحله اندازه‌گیری شده است. در این مطالعه تکیه یک میکرومتر دیجیتالی با دقت اندازه‌گیری یک میکرون استفاده شده است.

برای توصیف داده‌ها از مقایسه میانگین و انحراف میانگین

انقباض آبی برای هر کامپوزیت در محیط متفاوت به همراه نمونه‌های خطی استفاده شده است. میکفین
جدول ۱: ویژگی‌های کامپوزیت‌های مورد مطالعه

<table>
<thead>
<tr>
<th>Composite</th>
<th>Type</th>
<th>Manufacturer</th>
<th>Batch No.</th>
<th>Color Shade</th>
<th>Monomer</th>
<th>Filler (Wt %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtek Z250</td>
<td>Micro-Hybrid</td>
<td>3M ESPE, St Paul, MN, USA</td>
<td>N132502</td>
<td>A3</td>
<td>Bis-GMA, UDMA, Bis-EMA Silorane (3,4-epoxycyclohexylethyl cyclopolymethylsioxane, Bis-3,4-epoxycyclohexylethyl-phenylmethylsilane)</td>
<td>Silicon dioxide, Zirconium dioxide (82%)</td>
</tr>
<tr>
<td>Filtek P90</td>
<td>Micro-Hybrid</td>
<td>3M ESPE, St Paul, MN, USA</td>
<td>N146379</td>
<td>A3</td>
<td>DuPont monomer, UDMA, Dimethacrylate comonomers</td>
<td>Silicon dioxide, ytterbium Trifluoride (76%)</td>
</tr>
<tr>
<td>GC Kalore</td>
<td>Nano-Hybrid</td>
<td>GC-International Tokyo-Japan</td>
<td>0906021</td>
<td>A3</td>
<td>Perpolimerized filler (lanthanoied fluoride), fluoroaluminosilicate glass, strontium/barium glass, Silicone dioxide (82%)</td>
<td></td>
</tr>
</tbody>
</table>

روش‌ها در تحلیل داده‌های همبسته طولی استفاده شده است.

هلپسی در تحلیل داده‌های همبسته طولی استفاده شده است.

\[Y_t = \theta + \beta T_{time} + \beta C_{composite} + \beta E_{environment}, \]

\(i = 1,2,...,30; t = 1,2,...,18 \)

\(\text{که در آن} \ Y_t \) شاخص پانتهای میزان ابکامپوزیت \(\) ام در \(t \) اوسط زمان اندام‌گیری است. (\(t = 21 \) نتایج حاصل از برایش این مدل در جدول ۲ آمده است.

\(\text{نتایج بیانگر این مطلب است که} \) کاهش زمان اثر معنی‌داری بر ابکامپوزیت اکامپوزیت داشته است (\(P < 0.01 \)). همچنین نوع کامپوزیت از آماری معنی‌داری بر ابکامپوزیت آبی دارد.

\(\text{پدین صورت که اختلاف بین کامپوزیت‌های} \) Z250 و P90 معنی‌دار بوده است (\(P < 0.05 \)). اما این مدل تفاوت آماری معنی‌داری بین شناسی کامپوزیت P90 و کامپوزیت GC Kalore از سوی دیگر، در معنی‌داری آبی نقطه و پراکنده تفاوت آماری معنی‌داری از نظر میزان ابکامپوزیت آبی با یکدیگر ناشناخته‌اند (\(P > 0.05 \)).

جدول ۲: میزان انحراف معیار (برپایب منیمت) ابکامپوزیت‌ها به تفکیک در دو میعیت آب و پراکنده طبیعی

<table>
<thead>
<tr>
<th>TYPE</th>
<th>بعد نقطه</th>
<th>0.05</th>
<th>0.02</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z250</td>
<td>0.97</td>
<td>0.96</td>
<td>0.95</td>
<td>0.94</td>
</tr>
<tr>
<td>P90</td>
<td>0.88</td>
<td>0.87</td>
<td>0.86</td>
<td>0.85</td>
</tr>
<tr>
<td>GC Kalore</td>
<td>0.77</td>
<td>0.76</td>
<td>0.75</td>
<td>0.74</td>
</tr>
</tbody>
</table>

محله دندانپزشکی جامعه اسلامی دندانپزشکان، دوره ۲۳، شماره ۱، بهار ۱۳۹۱

۱۰۰ مقاله آزمایشگاهی ابکامپوزیت آبی سه نوع کامپوزیت با بیس رنگی ...
جدول 3. نتایج حاصل از برآری مدل حاشیه‌ای به‌داسای انبساط آبی کامپوزیت‌ها

<table>
<thead>
<tr>
<th>متغیر</th>
<th>طبقه بندی</th>
<th>P</th>
<th>براورد</th>
<th>طبقه بندی</th>
<th>Z250</th>
<th>P90</th>
</tr>
</thead>
<tbody>
<tr>
<td>عرض از میان</td>
<td>--</td>
<td>0.77</td>
<td>0.98</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>نوع کامپوزیت</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Z250</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Kalore</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>P90</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>مربوط به میزان آب</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>برآورد</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>طبقه مرجع</td>
<td>0/98</td>
<td>0/98</td>
<td>0/98</td>
<td>0/98</td>
<td>0/98</td>
<td>0/98</td>
</tr>
<tr>
<td>مربوط به میزان آب</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>برآورد</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>طبقه مرجع</td>
<td>0/98</td>
<td>0/98</td>
<td>0/98</td>
<td>0/98</td>
<td>0/98</td>
<td>0/98</td>
</tr>
<tr>
<td>زمان</td>
<td>--</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
<td>0/01</td>
</tr>
</tbody>
</table>

بحث

متغیرهای مطالعه به عزلی از زمینه‌های مختلف، چه در فاصله کامپوزیت‌ها انجام شده‌اند، یا در حال روابط کانون این مطالعات با مطالعه حاضر کار دشواری است. زیرا در این مطالعات از بازه‌های زمانی مختلف کامپوزیت‌های در و روش‌های اندام‌گیری متغیر استفاده شده است. (12) مطالعه که در مطالعه این مطالعات آبی در تحقیق های مختلف از نمونه‌هایی با اندام‌های متغیر استفاده شده است، جنین نمونه‌های آبی اندام‌های متغیر است. با ازا مدت و طول زمان برای ایجاد یکی از بیماری‌های دندانی
مقياس آزمایش‌کامی انساب آبی سه نوع کامپوزیت با بیس زرین

متعادلی بوده و ایجاد آن با بیسیاری از ترمیم‌های که در
کلینیک انجام می‌شود قابل مقایسه است. این یافته که
کامپوزیت‌ها برای رسیدن به نتایج ابتدایی به میزان
نسبتاً نیاز دارند توسط مطالعه حاضر و بیسیاری از
مطالعات دیگر تایید شده است.

در سال 1994 انساب آبی کامپوزیت‌ها Mc Cabe و Momoi
را طی شش ماه از طریق محاسبه نیروی وارده از طرف
کامپوزیت ها به دیواره مولده‌های بازدید بررسی کرده، (۱۶)
نتایج حاصل از این مطالعه نشان داد که میزان نیروی تی
شد ماه افزایش یافته است. این امر وجود نوی اصلاح
شده در طی مدت‌های را تا پیدا کردن. این تابع با بیسیاری از
مطالعات دیگر، از جمله مطالعه حاضر، تطبیق دارد. (۴۶-۸۸)
طبق نتایج مطالعات گشته گردید که جدید آبی و انساب آبی
در ایمپلات کامپوزیت به میزان کاهش در سن‌های اول اسیر نتیجه
در مجله دندانپزشکی جامعه اسلامی دندانپزشکان، دوره ۲2، شماره ۱، بهار ۱۳۹۱
نتیجه‌گیری

ب اثر علوم دندانپزشکی، اثرات مکانیکی و فیزیکی چسبیدن صفحه کامپوزیت در شیشه، اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکانیکی و فیزیکی صفحه کامپوزیت در شیشه و اثرات از تغییرات مکانیکی در صفحه کامپوزیت تأثیر گذار است. بنابراین، بررسی اثرات مکا...