دانشیه دندانپزشکی جامعه اسلامی دندانپزشکان/ دوره 32. شماره 2. تابستان 1391-92. صفحه 139-140

بحثی در مورد دستگاه های تمیز کننده با خاکستری فلزی و سطح پوشانده کلر مولینوس

کیهان فلاحی

چکیده

غیره، دندانهای به سه گروه داده بیانی (پست خوران) به صورت زیر تقلیل شدند: (RMGI)Fuji II LC گروه دوم: Fuji IXG Coat Plus(CGIC)

گروه یک: کامپوزیت 535 طیمی. بهبود ترمیمی، فوراً پایلش شدن و دندانها تحت دو حزار (5 - 5 درجه سانتی‌گراد) سیکل حرارتی قرار داده شدند. در هر گروه، نیمی از

دندانها تحت سیکل مکانیکی (پنج هزار سیکل) قرار گرفتند. بلکهکی از گروه به صورت زین 12 نمونه (دو ترمیم از هر گروه) تحت

فتریس و در حد هر دو گروه بیماری محسوب شدند. در نهایت، دندانها در نوشینندگاه 0.5 درصد سامت و در دما اثاث قرار داده، 3 ساعت و در دمای 0 درصد داده و تحت استریتور میکروسکوپی مشاهده گردید. آنالیز آماری با استفاده از آزمون‌های Mann-Whitney و Kruskal-Wallis و Wilcoxon مقایسه شد.

تشکیل‌کننده: تاکنون داد که سیکل مکانیکی، موجب افزایش معمولاً در ریزش سروکالی در گلاس آئنومر و Fuji IX و کلاس آئنومر

Fuji IX، بنا به طرح معياری در کامپوزیت Z350 تحت سیکل HFII LC و افزایش ریزش استیلی در Fuji IX, به طور معمولی در کامپوزیت Z350 تحت سیکل HFII LC و افزایش ریزش استیلی در دانشگاه علوم پزشکی تهران

 تحت سیکل و بدون سیکل، بیشتر از ریزش استیلی. تفاوت ریزش استیلی و سروکالی بین مواد ترمیمی مختلف، در حالت

(Fuji II LC)>Fuji IX>Z350 تحت سیکل معیاری شد (رزیزش تحت سیکل مکانیکی کمتر Fuji IX و Fuji II LC تحت سیکل مکانیکی Fuji IX و Fuji II LC تحت سیکل مکانیکی

کلید واژه‌ها: کامپوزیت، ریزش - گلاس آئنومر

پذیرش مقاله: 1390/06/27

نویسنده مسئول: دکتر بهاران رنجی امیدی، گروه آموزشی دندانپزشکی ترمیمی دانشکده دندانپزشکی دانشگاه علوم پزشکی تهران

e.mail: baharan_o@yahoo.com

مقدمه

ضایعات سروکالی به دلیل مسواک زدن ناشی، پوستی‌گی

وا نیروی انقباضی امواج می‌گرد. (1) ریزش یا از مشکل در ترمیم‌های سروکالی است. (2) ریزش یا از مشکل در ترمیم‌های سروکالی است. (2)

دروهمگی میکروسکوپی و کوچک بین ماروزین‌های دندان و

ماده پرکردنی، دلیل اصلی شکست ترمیم می‌باشد. (2-3). ریزش مصرف به نفوذ باکتری از فضای بین دندان-ترمیم و

ارزیابی SEM

کامپوزیت V

وزنی و گلاس آئنومر

بررسی اثر سیکل مکانیکی بر ریزش ترمیم‌های SEM
بعد از کاربرد وارنینگ نانوافیلی مطرح کرده است، هدف از این مطالعه بررسی آثار سیکل مکانیکی بر ریزنتش سه نوع (Z50Fuji IX,Fuji II LC) و همینگ درنده های ترمیمی همانند CIV حفرات و ارزیابی تطبیق لبی آنها توسط SEM در نمایی و پیامدهای ارائه داده شد.

روش بررسی

در این مطالعه آزمایشگاهی، تعداد سی ندانان سانتزال کاوا با ایجاد دو حفره در باکال و لیتیول (شست حفره) که بدون هرگونه نقصی بودن، مورد استفاده قرار گرفت و جهت ضد عفونی، یک هفته در محلول کارامین/5% نکهاریدی شدند. سپس تا زمان انجام آزمایش در محلول سالیق (9/4%) نشدن کلراید در آب و دمای جهاد درجه سانتیگراد نهایی CIV گردیدند. در ناحیه باکال و لیتیول ندانان، نرمالی و استاندارد به ابعاد سی میلیمتر مربع دستالی و سی میلیمتر اکلوژنیولیلی و عمق یک میلیمتر داخل عاج و لبه اکژنیولیلی یک میلیمتر زیر CIE (با مرزین اکلوژنیولیل مینا و مارژینیزیولیلی در سمان-عاج) توسط فر فز مخصوص روند و هندیسی در سطح بالا و اسبر آب ترش داده و پالپ ندانان به صورت مکانیکی خارج شدند. فرزند را علیه این ترش تعیین کرده و به این ترتیب شش حفره ندانان ایجاد شد. نمونه ها به طور تصادفی با توجه به دو عامل نوع ماده ترمیمی و وجود یا عدم وجود سیکل مکانیکی تقسیم شدند. نتایج از نظر نوع ماده ترمیمی، با یک روش تصادفی با استفاده از نرم افزار ویرایش 16 به سه گروه دو تابی (پیست حفره) به صورت تصادفی شدند:

کروه 1: پس از ریزنتش، نواحی میانی جهاد به مدت سه ثانیه و 15 ثانیه توسط استفاده سفیرک اسید سفیرک کمی، ساختم ایران اج شده و به مدت 15 ثانیه نشستخ داده و با گلوله پوش شکش گردید. به طوری که مختصری ریزنتش در حفره مانند و بعد از لایه ادهزیο 3M ESPE, Paul,MN,USA Adper Dental Products, St single bond (Optilux 501,QTH,Kerr,USA) زده و دو ثانیه کیور شدند.

به داخل توپولهای عاجی می گردید که عامل ایجاد پوسیدگی تانوهی و تحریک پالپ توسط توکسین نباتی و مرطوبات حفراتی و تقریبی در مخلوط مختلف بین خصوصیات فیزیکی ندانان و موارد ترمیمی (شامل انتقای پلیمراسیون- ضریب انباشت حراری و ضریب انباشت است) را به یک روش مرتبط هستند.

تاکنون دقیق تری زیادی صورت گرفته است اما به یک آراء روش‌هایی نهایی در ایجاد و زیستهد و در نتیجه پیشگیری از پوسیدگی و سازگاری نسبی با بالا و پایه‌های پروتیتال، ضریب انباشت حراری مشابه به عاج و انقباض سخت دندان از کامپوزیتی می‌باشند (12-13). تاثیرات مورد اثر نوع ماده ترمیمی در حفرات CIV و ریزنتش و توئنی سیل وجود دارد. برای آزمایش مطالعات سیل بهتر (15) (عهد) سیل بهتر (16) و یک سیل قابل کلاس آئورم را نسبت به کامپوزیت گزارش کرده‌اند (17). ولی باید بررسی کرد که در حضور نور کاری که تغییرات در ریزنتش این دو ماده رخ می‌دهد. در مورد کامپوزیتی نتایج مبنا در مورد اثر سیکل مکانیکی بر روي ریزنتش وجود دارد. بعضی مطالعات بین کاره‌ها که استفاده از سیکل مکانیکی اثر فایل‌های ریزنتش نشان داده‌است (18) در حالی که عهد سیلی دیگر افزایش معنی‌دار ریزنتش را بعد از سیکل مکانیکی نشان داده‌اند (19-20). تاکنون مطالعات انگلیسی در زمینه اثر سیکل مکانیکی بر تطبیق لبی آموزه‌ها انجام شده است.

Equia Coating(G Fuji IX و یک ماده است معرفی شده که اعمال در درزه به بهره Coate Plus) خصوصیات فیزیکی، کانتروریک سریع و کاهش ریزنتش.
پس از آن، هر حفره با شیشه کامپوزیت 3M ESPE، Z350 ترمیم شده و در هر مرحله با Dental Products, USA) دستگاه 501 و شست یا ترمیم با Optilux 501 متمایز به مدت چهل ثانیه کوب شدند.

g) کروه ۲ در این گروه از Conditioning (Dentin conditioner, GC, Japan) ثانیهی کرون در با سرنگ هوایی (بدون خشک کردن زیاد عاج) تمام حفره با تنظیم شستنایه با پرسته و بعد از شستن کامل سمان (دو و نیم) Coating (G Coat plus, GC Corp, Japan) دقیقه) یک لاژی استفاده شد.

کروه ۳ در این گروه بعد از Conditioning (Dentin conditioner, GC, Japan) به مدت بیست ثانیه و شستشوی و خشک کردن با سرنگ هوایی (بدون خشک کردن زیاد عاج) دو فاقدک با استفاده از پایه (Hitachi s4100, Japan) ارزیابی تطبیق لبه‌های مشابهه شدند. قبل از ارزیابی تطبیق لبه‌های، ابعاد اندازه‌گیری و میزانیستی ترمیم‌ها روی ریلیکایا با نرم افزار FE-SEM اندازه‌گیری کرده و نتایج با اندازه‌گیری‌های قبلی ثبت شده توسط ابعاد حفره مقایسه شدند.

در جریان ترمیم، طول کل خشک کردن ماله‌بندی، درصد طول کل ترمیم با این شکل بیان گردد:

دردستگاه تحت دوز هر حفره با دو دستگاه گریت (FGSF 273012)SUPER-FINE اماسی (Ab) پلیش شدند و در کروه ۲ و (گلاس آئینور) مجدداً به کار رفت. پس از آن دندان‌ها جهت ترمیم‌کاری به ۲-۵ سانتی‌گرم گردان داده شدند و بعد نیمی از دندان‌های هر گروه SD (Germany) تحت سیکل ترمیمی توسط دستگاه (قرار گرفتن تیوب سینتکریک) ابتدا با کم‌الاهمیت پوشانیده شد سه پسر به مرکز و به موادز دوارهای الیسه در داخل آکلیل خود سخت (Acropolars 200, Malic Medical Industries) شدند و سپس با تک میلی‌متر زیب مارزین زنگیویلی Co, Tehran, Iran) ترمیم قرارداده شدند و در مرحله بعد از ایزیز ترمیم سخت تحت

مجله دندانپزشکی جامعه اسلامی دندانپزشکان / دوره ۲۳ شماره ۲ تابستان ۱۳۹۱
کد ۲: نفوذ رنگ بیش از نیمی از دیواره انسیزیالی یا جینجیوالی که به دیواره اکزیال نرسیده باید
کد ۳: نفوذ رنگ به دیواره اکزیال رسیده است. با توجه به
اهداف مطالعه و نوع متفاوت‌های بررسی شده، روش‌های
توسعی و استاتیسکی آناری مورد استفاده در این مطالعه
عبارتند از: جدول فرآیند به سوده (طبقه‌بندی میزان
ریزنشتگی بر حسب نوع ماده ترمیمی و به کارگیری سیکل
مکائیکی)، آزمون Wilcoxon جهت مقایسه ریزنشتگی
و سرویکالی در دو نمونه، آزمون U Mann-Whitney
جهت مقایسه میزان ریزنشتگی بر حسب به کارگیری سیکل
مکائیکی در هر یک از سه ماده ترمیمی به تنهایی در
محیط دوباره و آزمون Kruskal-Wallis جهت مقایسه میزان
ریزنشتگی بر حسب نوع ماده ترمیمی در وسیله و وجود
سیکل مکائیکی به تنهایی در هر یک از ماروزن‌ها بسته به
قبول اول اول برای ۰/۰۵ همیند است از مطالعه
تعیین گردید.

یافته‌ها
نتایج ریزنشتگی انسيزیالی و سرویکالی در جدول ۱ قرارش
ده است.

این ماروزن‌ها: ریزنشتگی سرویکالی به طور معنی‌داری در
کامپوزیت تحت سیکل و به روند سیکل مکائیکی
پیشرفت از ریزنشتگی انسيزیالی شد. (جدول۲) در حالتی که تفاوت
ریزنشتگی انسيزیالی و سرویکالی در
Fuji II LC با و بدون
سیکل مکائیکی به تنهایی و بدون اعمال سیکل
Z350 کامپوزیت مکائیکی معنی‌دار شد. (P>0/05)

اثر سیکل مکائیکی: سیکل مکائیکی، موجب افزایش معنی‌دار
Fuji II LC و Fuji IX کامپوزیتی در کلاس آب‌دریاری
هم تحت اثر
امکاپ مکائیکی به طور معنی‌داری واقعیت یافت.
(جدول ۳) اثر سیکل مکائیکی، اثر معنی‌داری بر ریزنشت
انسيزیالی و سرویکالی کامپوزیت ۵۰ و ریزنشت انسيزیالی
(Kruskal-Wallis) درباره

محلول فونسش با زای/۵ درداشته ۷۳۷۷ سانتی‌گراد به
مدت دو ساعت رطوبت گردید. بعد نمونه‌ها با محلول
فیتولوژیک شسته و با هوا خشک شدند. در نهایت دندان‌ها
در آکرل خود سخت شونده قرار داده شده و به وسیله
دستگاه برخ (Presi,Mecatome,T 201 A,France)
طولی در وسیله ترمیم داده شده به غونا به یک برخ با
دستگاه یک میلی‌متر در ناحیه وسط ترمیم ایجاد شد.
بین ترتیب یک قطعه با دو سطح ایجاد شده که در بررسی
ریزنشتگی ارزیابی قرار گرفت. (۳) پس از مشاهده
SMZ 800,Tokyo,Japan)
نفوذ رنگ زیر استرمه‌کننده (Nikon)
(۴) با برگ‌گری ۱۰۰ و ریزنشت طبق جدول زیر

طبیعت‌بندی شد:

۲۰: بدون نفوذ رنگ

۱۶: نفوذ رنگ کم‌تر از نیمی از دیواره انسيزیالی یا
جینجیوالی

شکل ۱: ماروزن‌ها یا به هشت بخش تقسیم شده و هر
بخش چاکانه برای بررسی درد کستشر در دوزها مشاهده شد.

شکل ۲: تصویر سمت راست ریلکا را با یکمک‌سیم بیست برابر
نشان می‌دهد تصویر سمت چپ در بینایینی همان نمونه را با
یکمک‌سیم به دوباره نمایان ساخته است.
درصد در بین اینونی عبارتند از : کامپوزیت Z350 سیکل مکانیکی (نمونه: 1/1% و نمونه: 2/1%); کامپوزیت بدون سیکل مکانیکی (نمونه: 1/5% و نمونه: 2/0%)

مقایسه ریزشنت بر حسب ماده ترمیمی نشان داده که تفاوت
ریزشنت سرویکالی بین موارد ترمیمی در سه گروه در حال
تحت سیکل معنیدار گردید. (P<0/002) همچنین، تفاوت
ریزشنت انسیزیالی بین موارد ترمیمی در حال تحت سیکل
معنیدار گردید. (P<0/001) در حالی که تفاوت ریزشنت
سرویکالی و انسیزیالی بین موارد ترمیمی در سه گروه در
حال بدون اعمال سیکل معنیدار نشد. (P>0/05)

نتایج

جدول 1: فرآیند میزان ریزشنت در هر یک از مارژینها بر حسب دو عامل (ماده ترمیمی، به کارگیری سیکل مکانیکی)

<table>
<thead>
<tr>
<th>ماده ترمیمی</th>
<th>سروریکال</th>
<th>انسیزیال</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z350</td>
<td>2/7/1</td>
<td>2/1/1</td>
</tr>
<tr>
<td>بدون سیکل مکانیکی</td>
<td>2/1/1</td>
<td>2/1/1</td>
</tr>
<tr>
<td>Fuji IX</td>
<td>2/1/1</td>
<td>2/1/1</td>
</tr>
<tr>
<td>بدون سیکل مکانیکی</td>
<td>2/1/1</td>
<td>2/1/1</td>
</tr>
<tr>
<td>Fuji II LC</td>
<td>2/1/1</td>
<td>2/1/1</td>
</tr>
<tr>
<td>بدون سیکل مکانیکی</td>
<td>2/1/1</td>
<td>2/1/1</td>
</tr>
</tbody>
</table>

جدول 2: نتایج آزمون Wilcoxon درباره مقایسه میزان ریزشنت در دو مارژین بر حسب دو عامل (مواد ترمیمی، سیکل مکانیکی)

<table>
<thead>
<tr>
<th>ماده ترمیمی</th>
<th>تعداد</th>
<th>انسیزیال</th>
<th>بارکارداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z350</td>
<td>2/1/1</td>
<td>2/1/1</td>
<td>2/1/1</td>
</tr>
<tr>
<td>بدون سیکل مکانیکی</td>
<td>2/1/1</td>
<td>2/1/1</td>
<td></td>
</tr>
<tr>
<td>Fuji IX</td>
<td>2/1/1</td>
<td>2/1/1</td>
<td>2/1/1</td>
</tr>
<tr>
<td>بدون سیکل مکانیکی</td>
<td>2/1/1</td>
<td>2/1/1</td>
<td></td>
</tr>
<tr>
<td>Fuji II LC</td>
<td>2/1/1</td>
<td>2/1/1</td>
<td>2/1/1</td>
</tr>
<tr>
<td>بدون سیکل مکانیکی</td>
<td>2/1/1</td>
<td>2/1/1</td>
<td></td>
</tr>
</tbody>
</table>

از لحاظ آماری معنی‌دار، a, b, c

واژه‌های کلیدی:

بررسی اثر سیکل مکانیکی بر ریزشنت ترمیمای V کامپوزیت...
بحث

در این مطالعه، از دندانهای کاو استفاده شد. تریال‌های لازم فراهم شده است. مطالعات در حال اجرا با مدل‌های مختلف انسان می‌باشد. در داده‌های کد 24-25، با استفاده از نرم‌افزارهایی مانند Z350 و Fuji IX، سریال‌هایی از روش‌های مختلفی به کار گرفته شد. در نهایت، در نتایجی که در جدول‌هایمان ذکر شده می‌تواند یکی از دندانهای سیستم‌های مختلفی باشد.
بررسی اثر سیکل مکانیک بر ریزش پرمیهای CIV

ناحیه سمان (سروریکالی) نشان داده است (۳۰)٪ ترمیم‌های کامپوزیت در مولس‌های سروکالی موارد مقابل، ریزش پرمیهای CIV

بیشتر از ترمیم‌های استقرار یافته در دندان‌های فوق دندان مقابل نشان داده (۲۷)

این نتایج نشان داد که در سطوح افزایش گرفته شده، مقادیر نیرو و وری در کالر آن‌های مهار مکانیکی فازهایی و یا مکانیکی، باشد.

اثر مارژین: با مقایسه درجه انفیلدراسیون در لیهای مینا و سمان نمونه‌های سیکل مکانیکی، نشان داده که در حالات تحت سیکل، نفوذ رنگ در لیهای سمانی به طور منع‌کننده‌تر در A grade از افزایش ریزش Rigsby که در فاصله ناحیه کامپوزیت‌ها، نشان می‌دهد، یافته که تحت تأثیر سیکل مکانیکی واقع شد. همان طور که در مطالعه Fuji IX تحت تأثیر سیکل مکانیکی واقع شده، مقادیر نیرو و وری کاهش دیده شد. مقادیر نیرو و وری کاهش دیده شد.

یافته‌های Fuji II LC و گزارش کرده (۳۰)

از نظره این محقق بررسی کردن می‌تواند در کامپوزیت استحکام اهژه‌های سیکل در سروکالی اندازه‌گیری نسبت به مینا با پیوست

است (۳۱) (۲۵-۳۷) در اثر طوفان وری در دندان‌های فوق دندان Z350 که در این تحقیق اعمال شدند، و ناحیه کامپوزیت‌ها که در فاصله دندان‌های فوق دندان تحت فشار می‌باشد.

یک کامپوزیت با انقباض در این مطلوب از جهت کاهش تنش ناشی از

روش C و کافش حجم کامپوزیت استفاده شد. در لیهای سروکالی انقباض در مراجعه‌سنجین کم قدر بر غلیظ بر استحکام اهژه‌های سیکل در دندان‌های فوق دندان Z350 تحت فشار می‌باشد.

سیکل مکانیکی واقع شده، ریزش پرمیهای ضعیفتر

سمنان افزایش معنی‌داری یافته.

در مطالعه حاضر، ریزش سیکل در هر دو تحت Fuji IX در سیکل در A grade از سیکل مکانیکی واقع شد. و در مطالعه Fuji II LC در سیکل در A grade از سیکل مکانیکی واقع شد.

ویژگی‌های نیروی انقباضی برای یک هزار سیکل قرار گرفته، یافته شد. در حالی که با افزایش نیرو به دویست بیشتر چرخه‌های، سیکل مکانیکی واقع شده، مقادیر نیروی انقباضی بر دویست مطالعه گزارش. (۲۱) در این مطالعه مورد استفاده سیکل مکانیکی به دویست مطالعه گزارش. (۲۱)

بود، از نظره این محقق بررسی کردن در مقایسه سیکل مکانیکی ده به دویست مطالعه گزارش. (۲۱) در این مطالعه مورد استفاده سیکل مکانیکی به دویست مطالعه گزارش. (۲۱)

در مقایسه سیکل مکانیکی به دویست مطالعه گزارش. (۲۱) در این مطالعه مورد استفاده سیکل مکانیکی به دویست مطالعه گزارش. (۲۱)

مجله دندانپزشکی جامعه اسلامی دندانپزشکان/ دوره ۲۳ شماره ۲ نامه ۱۳۹۱
با وجود اینکه تا کنون هیچ مطالعه مقایسه‌ای بین ریزش‌های کامپوزیت و کلاس آی‌پرو مربوط به تأثیر مدل‌های مختلف حاضر نشان داده که سیکل مکانیکی موج افزایش ریزش‌های سرویکال در انسپیزال و سرودیال کلاس آی‌پرو لایت در محیط SEM وجود دارد. با انتخاب استاندارد SEM دیده می‌شود که در این مطالعه سایر ماده‌ها گردد، به سرهای مطالعات مشابهی باشند.

نتیجه‌گیری

بر اساس نتایج به دست آمده، به نظر می‌رسد تطبیق لیمی Fu(2) II تحت سیکل مکانیکی بهتر از کلاس آی‌پرو Fu(2) II تحت سیکل مکانیکی بهتر از Z350 باشد. بهترین تطبیق این لیمی Fu(2) II تحت سیکل مکانیکی سیکل‌های مکانیکی تشکیل داده می‌شود. در مدل‌های انسپیزال و سرودیال کلاس آی‌پرو و Z350 تحت سیکل سیل، سیل بهترین نسبت میانگین مانند نیز داشته است. سیکل‌های مکانیکی، موج افزایش ریزش‌های سرویکال در انسپیزال و سرودیال کلاس آی‌پرو Fu(2) II تحت سیکل ریزش‌های سرویکال Fu(2) II LC.

تقدیر و تشوک

این مقاله با به‌کارگیری ابزارهای تخصصی و طرح مصوب مرکز تحقیقات دندانپزشکی دانشگاه علوم پزشکی تهران به شماره 1363/672 مورد 89/58 می‌باشد که بین این وسیله از سرشار محتوی دانشگاه و مرکز تحقیقات دندانپزشکی همکاری کرده که در اجرا این طرح نتایج حاصل شده و دانشجویان می‌گردید.

در پایان نتایج بالا در سطح خامه و مواد کلاس آی‌پرو سرویکال Fu(2) II LC در محیط SEM وجود دارد (28)، که در این مطالعه به شکل زمانی قابل قبولی است. بنابراین، مطالعه حاضر نشان داد که سیکل مکانیکی، موج افزایش ریزش‌های سرویکال در انسپیزال کلاس آی‌پرو Fu(2) II LC و افزایش ریزش‌های سرویکال Fu(2) II LC تحت نمایش در دیدن SEM می‌باشد. در نتیجه این مطالعه، قضاوت ریزش‌های سرویکال به سه نوع ماده فضایی، هنگام اعمال سیکل مکانیکی، قضاوت ریزش‌های انسپیزال و سرویکال به سه نوع ماده فضایی، هنگام اعمال آی‌پرو. در این مطالعه به استفاده از کامپوزیت Z350 دیده می‌شود که در این مطالعه به نظر می‌رسد تطبیق لیمی Fu(2) II تحت سیکل مکانیکی بهتر از کلاس آی‌پرو Fu(2) II تحت سیکل سیل بهترین نسبت میانگین مانند نیز داشته است. سیکل‌های مکانیکی، موج افزایش ریزش‌های سرویکال در انسپیزال و سرودیال کلاس آی‌پرو Fu(2) II تحت سیکل ریزش‌های سرویکال Fu(2) II LC.

توضیحات

این مقاله با به‌کارگیری ابزارهای تخصصی و طرح مصوب مرکز تحقیقات دندانپزشکی دانشگاه علوم پزشکی تهران به شماره 1363/672 مورد 89/58 می‌باشد که بین این وسیله از سرشار محتوی دانشگاه و مرکز تحقیقات دندانپزشکی همکاری کرده که در اجرا این طرح نتایج حاصل شده و دانشجویان می‌گردید.
REFERENCES
