پژوهش اثر تعداد نقاط مرکزی بر دقت ترسیم منحنی قوس دندانی به روش سه بعدی

دکتر مجتبی نوری ۱- دکتر آرش فرمان‌زاده ۲
۱- دانشجوی دانشگاه علوم پزشکی شهید بهشتی
۲- استادیار تحقیقات علوم دندانپزشکی دانشگاه علوم پزشکی شهید بهشتی

چکیده
زمینه و هدف: حصول یک منحنی دقیق مرکزی بر قوس دندانی بیماران گامی مهم در طراحی ارتودنسی است. این تحقیق مقایسه منحنی انتقالی در دندان‌های مقیاسی در ارتفاعات مختلف با دقت ترسیم منحنی براکت (CUBP) که در تابع جهانی دندانی قرار دارد.

روش پژوهشی: در این مطالعه به روش نمایش تخصصی ریاضی مربوط به تابع جهانی برای رسم منحنی قوس دندانی هجده، فرد باید باحل کلیه سه توصیف برای CUBP به کار رفته باشد. سپس کلیه اعداد کلیه منحنی را به CUBP باید بروز کند. برای این که منحنی درجه جهانی دگر باشد، استفاده از تابع جهانی CUBP به روش دانش‌های دندانی و برای ورود به روش اصلی شده است. منحنی این مربوط به هر مدل بالا استفاده از CUBP در طراحی ارتودنسی کاملاً ممکن است. منحنی‌های تبحیر مربوط به هر مدل بالا به عنوان فاصله SSCP و انرژی مربوط به هر مدل بالا به عنوان فاصله Intracllass Correlation Coefficient و Root Mean Square (RMS) استفاده می‌شود. نتیجه‌گیری: استفاده از تابع CUBP برای ترسیم یک منحنی جهانی درجه جهانی CUBP نیاز به بازیابی منحنی CUBP نیاز است.

کلید واژه‌ها: منحنی‌های ترسیمی بر قوس دندانی، قدرت اختلال میزان آماری نسبی، سه‌بعدی منحنی‌ها

مقدمه
یکی از عوامل مهم و پایدار جهت طراحی دیواره در ارتودنسی تعبیه قوس دندانی بیماران است. (۱-۲) تعبیه قرم مناسب فرم قوس دندانی به دقت، به‌طور اسلامی در طراحی ارتودنسی، شیب، اکثریت مکانیک و تیا به دقت در دیواره مطرح بوده است. اولین بار فرم قوس فکی به صورت یک طبقه کشیده برای فک پایین توصیف و وجود یک فرم برای فاکشن مناسب لازم داشته است. (۱) توصیف‌های بعید از دقیق، چالش‌هایی نیز می‌باشند. (3-4)

فرم قوس فکی به صورت نیمه بیضی (۱), سه‌بعدی و (5), منحنی زولفی‌کر (۶) و پایدار نیز کاوشی (۷) بوده است. در سال‌های اخیر نیز فرم‌های ریاضی Cubic Spline برای این منحنی‌های بر روی مخروطی (۸), تابع با (۹) و تابع CUBP (۱۰) و (۱۱) جهت پیش‌بینی و توصیف فرم قوس‌های دندانی به کار رفته‌اند. تکنیک‌های شیفته‌گر در طراحی قوس‌های دندانی یکی از عوامل مهم و پایدار جهت طراحی دیواره در ارتودنسی می‌باشد. (۱۲)
روش بررسی

این مطالعه تجربی تکنیکی بر روی کست‌های ارتوتودنیکی (Coordinate Measuring Machine, CMM) می‌باشد که به اثبات این مقاله، کارآمدی از دستگاه‌های چاپ‌برداری (Curve expert professional, version 1.01) در دقت ترسیم منحنی در دستگاه‌های چاپ‌برداری (Coordinate Measuring Machine, CMM) است.

 skys:
این تمرین از روش کنترل مربوط به پایان نهایی منحنی ترکیبی گرفته شده است. (10)
در مدل عرضه بر دقتی TXT، مختصات مربوط به
کلیه کست‌های ارتوتودنیکی (Coordinate Measuring Machine, CMM) استفاده یک راه‌نما برای ساخت شده است. مجموعه نقطه‌ای مناسب جهت ترسیم قوس است. در برخی مطالعات نقاط طراحی ناپایدار
و ترسیم منحنی قوس دندان...
یافته‌ها
نتایج حاصل از صحت عملکرد دستگاه و ایزوئید که شامل (Reference master gauge disc, mitutoyo, osaka, JAPAN) 69/94 میلی‌متر در دمای بیست درجه سلسیوس محیط توسط ایزولویر بود نشان داد میانگین انتخابی شده برای آزمایشگرها از اندازه‌ها حقیقی 69/44 میلی‌متر دارای اختلاف میانگین انتخابی برای آزمایشگرها از اندازه‌ها حقیقی 44 میلی‌متر در برابر با 1/0/0 میلی‌متر می‌باشد.

در جدول ۱ آمده است. متوسط ضریب همبستگی بین ۴۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب همبستگی بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب همبستگی بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب همبستگی بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب همبستگی بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب همبستگی بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب همبستگی بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب همبستگی بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب همبستگی بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب همبستگی بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب همبستگی بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب همبستگی بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب همبستگی بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب همبستگی بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب همبستگی بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب همبستگی بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب همبستگی بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب همبستگی بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب همبستگی بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب همبستگی بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب همبستگی بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب همبستگی بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب HMBSTG در جدول ۱ آمده است. متوسط ضریب HMBSTG بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب HMBSTG بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب HMBSTG بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب HMBSTG بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب HMBSTG بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. MRC با ۹۹/۴۶ بود. متوسط ضریب HMBSTG بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود. متوسط ضریب HMBSTG بین ۱۲ نقطه و منحنی تطبیق شده برآورده مجموع نمونه‌ها برابر با ۶۹/۴۶ بود.
جدول 1: ضریب همبستگی تطبیق نقاط بازیابی با منحنی منطقه شده بر 12 نقطه و شش نقطه باکالی در فک بالا و بایین و توان دوم میانگین باقیمانده نقاط از روی منحنی ترسیمی نقاط بر روی سطح باکال دندانها در هر دو فک

<table>
<thead>
<tr>
<th>شماره</th>
<th>شش نقطه</th>
<th>RMS* منو</th>
<th>شش نقطه</th>
<th>RMS* منو</th>
<th>شش نقطه</th>
<th>RMS* منو</th>
<th>شش نقطه</th>
<th>RMS* منو</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/81420</td>
<td>8/39867</td>
<td>1/97987</td>
<td>1/75660</td>
<td>1/97987</td>
<td>1/97987</td>
<td>1/97987</td>
<td>1/97987</td>
</tr>
<tr>
<td>2</td>
<td>1/99124</td>
<td>1/99124</td>
<td>1/99124</td>
<td>1/99124</td>
<td>1/99124</td>
<td>1/99124</td>
<td>1/99124</td>
<td>1/99124</td>
</tr>
<tr>
<td>3</td>
<td>1/95155</td>
<td>1/95155</td>
<td>1/95155</td>
<td>1/95155</td>
<td>1/95155</td>
<td>1/95155</td>
<td>1/95155</td>
<td>1/95155</td>
</tr>
<tr>
<td>4</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
</tr>
<tr>
<td>5</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
</tr>
<tr>
<td>6</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
</tr>
<tr>
<td>7</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
</tr>
<tr>
<td>8</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
</tr>
<tr>
<td>9</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
</tr>
<tr>
<td>10</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
</tr>
<tr>
<td>11</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
</tr>
<tr>
<td>12</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
</tr>
<tr>
<td>13</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
</tr>
<tr>
<td>14</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
</tr>
<tr>
<td>15</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
</tr>
<tr>
<td>16</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
</tr>
<tr>
<td>17</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
</tr>
<tr>
<td>18</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
<td>1/99949</td>
</tr>
</tbody>
</table>

RMS = Residual Mean Square
کرگر پیش بینی فرم قوس با استفاده از عرض قوس بین کاسپی‌ها دیستوپلاکال موله‌ای دروم و عمق قوس تا خط وصل بین کاسپی‌ها مذکور مغروکردن. متوسط ضریب همبستگی نقطه شاخه ثبت شده و توان تغییر شده با انحراف معیار (SD) به دست آمد که نسبت به مقادیر به دست آمده در مطالعه حاضر اندکی کمتر است.

و همکاران در مطالعه خود (23) اعلام کرده‌اند که محققان در مطالعه خود (23) اعلام کرده‌ا
بیشترین هم‌مانگی با تابع بنا را چند جمله‌ای فوق داشت
مزیت تابع بیشترین شده در مطالعه ایشان عدم کامینیک
اتنرکانیت در مقایسه با بنا بی‌بود. (۲۴) در مطالعه اندازه‌گیری
نقاط انتخاب شده به عنوان شاخص برای تعیین قوس، همان
نقاط اتصال کلنیکی براکت بودند. ضمناً روند دینامیکالی
نمونه این نقاط با استفاده از CMM تأثیر این اکنون
به استفاده از دستگاه فنونیک و اسکن برخوردی است.
همچنین ضریب همبستگی کل نقاط اتصال کلنیکی براکت با
تابع به دست آمده از نقاط انتخابی مقدار بی‌سیری داشت.
علت این می‌تواند به چند مورد باشد. مورد اول اینکه
نقطه انتخابی به کار رفته برای تولید مدل در این مطالعه
نمونه‌ای از نقاط بی‌بوده است که در ان تفاوت‌های بین مدل
شک نمی‌کند. بهترین با کار رفته در این مطالعه ضریب همبستگی
از جمله چند جمله‌ای صفر نیوده است. از سوی دیگر، متوسط
برای کل نمونه‌ها در مطالعه حاضر در تطبیق ۱۴ نقطه
با منحنی مشابه شده و ۱۲ نقطه با منحنی حاصل از شش
نقطه مکادر بالاتری داشت. علت این امر مقایسه در هر دو
حالات با یک تابع چند جمله‌ای و نه تابع بی‌بود.

نتایج

۱- امنک تقلیل نقاط شاخص برای ترسیم قوس دندانی از

۱۲ نقطه اتصال کلنیکی براکت از مدول دوم تا مدول دوم به
شک نمی‌کند وجود دارد.

۲- شک نمی‌کرد انتخابی اتصال کلنیکی براکت جهت ترسیم
قوسی دندانی با دقت بی‌باید نقاط روی دندان‌های
سانتی‌نیتر، کالیفرنیا و مولویاه دوم در هر قوس دندانی باشد.

تک‌نمره و تشکر

این مطالعه، حاصل طرح مصوب مرکز تحقیقات علوم
دندانپزشکی دانشگاه علوم پزشکی شهید بهشتی و برگرفته
از پایان‌نامه دوره دکتری حرفه‌ای دکتر آرش فرمانی. به
راهنمایی دکتر مهدی شریفی فرمانی و دکتر کامران مهری
به حمایت‌های مرکز تحقیقات علوم دندانپزشکی و معاونت
پژوهشی تشریح می‌گردد.

REFERENCES