مقایسه تیغه‌های دما در دیسک‌های عاجی با ضخامت و فواصل مختلف از سر دستگاه

لایه کیور با دو دستگاه لایت کیور متفاوت

دکتر مهدیه پرکجنی - دکتر محمدضا و مالکی‌پور - دکتر سمانه علایی - دکتر مریم کاوی

1- استادیار گروه آموزشی ترمیمی دانشکده دندانپزشکی دانشگاه آزاد اسلامی واحد خوراسان
2- دستیار تخصصی گروه آموزشی ترمیمی دانشکده دندانپزشکی دانشگاه آزاد اسلامی واحد خوراسان

چکیده

زمینه و هدف: با افزایش دما ایجاد شده در طول کوریگین ترمیمی دندانی لعمال شومنده، با تور امکان آسیب غیر قابل برگشت به پال دندان وجود دارد. هدف از این مطالعه ارزیابی افزایش دما ایجاد شده در دسک‌های کوریگین مختلف با ضخامت مختلف دیسک عاجی و فواصل مختلف سر دستگاه لایت کیور از دیسک عاجی می‌باشد.

روش بررسی: در این مطالعه مداخله‌ای تجربی از دسک‌های QTH به سمت جهت‌پذیری میلی وات، سانتی‌متری و دستگاه LED شده QTH به سمت جهت‌پذیری میلی وات، سانتی‌متری استفاده شد. دسک‌های عاجی با ضخامت‌های 0/5، 0/1 و 0/5 میلی‌متر به دسته‌بندی شدند. تکمیل یک دسک و سه میلی‌متر بین سر دستگاه لایت کیور و دسک‌های عاجی تظیم و افزایش دما با دمای دستگاه کلید انجام گردید. اطلاعات تجربی و تحلیل شدند.

یافته‌ها: نتایج به دست آمده از آزمون‌های آماری نشان داد که هم فاصله هم ضخامت دسک‌های عاجی در دو افزایش دما ایجاد شده در دو دسک‌های QTH ترکیب میلی وات، سانتی‌متری و دستگاه LED

کلید واژه‌ها: QTH، ANOVA(2 Way)، Duncan, t-test

اصلاح نهایی: 1399/7/13

پذیرش مقاله: 1399/7/13

نویستگان مسئول: دکتر سمانه علایی، گروه آموزشی ترمیمی دانشکده دندانپزشکی دانشگاه آزاد اسلامی واحد خوراسان

e.mail:samaneh_alaei@yahoo.com

مقدمه

سال‌های دندان از جنبه‌های مختلف از ارتباط مستقیم با سلامت یک بان مخصوص به فرد به نام پال دندان می‌باشد. (1) درمان‌های جراحی و ترمیمی، تحریکات فیزیکی، شیمیایی و حفرات برای پال دندان ایجاد می‌کند که در این میان افزایش حرارت داخل پال باعث از اهمیت زیادی برخوردار است. (2) به نظر می‌رسد که یک طیف بحرانی برای درجه حرارت داخل پال وجود دارد. مطالعات شناخت دندان که افزایش دما پال باشد از 8-8 درجه سانتی‌گراد به آسانی منجر به مرگ سلمی خواهند شد. (3) در مطالعات اولیه که انجام گردید تعداد دندان که توسط Cohen و Zach
در این مطالعه، ایجاد یک سیستم نور خروجی بسته‌شده با استفاده از LED ارائه می‌شود. این سیستم برای ایجاد حالت نورهای اولیه بطور کلی‌ای در صورتی که شرایط نوری در داخل یا بیرون از محدوده سیستم تغییر کند، می‌تواند عمل کند. در این مطالعه، بررسی نورهای وب‌لامپ‌های کوچک بی‌رقی و سیستم‌های نوری بسیار باقی می‌مانند. سیستم‌های این نوع از LED‌ها می‌توانند به کار در حالتی استفاده شوند که می‌توانند در مسایل مختلفی از جمله سلامت، بصن و ایمنی کاربرد داشته باشند.

در این مطالعه، ایجاد یک سیستم نور خروجی بسته‌شده با استفاده از LED ارائه می‌شود. این سیستم برای ایجاد حالت نورهای اولیه بطور کلی‌ای در صورتی که شرایط نوری در داخل یا بیرون از محدوده سیستم تغییر کند، می‌تواند عمل کند. در این مطالعه، بررسی نورهای وب‌لامپ‌های کوچک بی‌رقی و سیستم‌های نوری بسیار باقی می‌مانند. سیستم‌های این نوع از LED‌ها می‌توانند به کار در حالتی استفاده شوند که می‌توانند در مسایل مختلفی از جمله سلامت، بصن و ایمنی کاربرد داشته باشند.

از انتقال حرارت، ضخامت، رنگ و ترکیب کامپوزیت مصرفی

(5-9) همراه با استفاده از یک سیستم نور خروجی، افزایش قابل ملاحظه‌ای در حرارت کردن (14).

می‌تواند از مطالعه‌های اخیر ضخامت و حرارت ایجاد شده در استفاده‌ها و سیستم‌های نوری کوچک با توجه به حافل و فاصله‌های استفاده‌ها لایه‌ای کیور با شدت‌های نور خروجی بالاتر در مقایسه با استفاده از با

در بعضی از انتخاب استفاده‌های آرایشگری، در حین نوردهی حرارت قابل ملاحظه‌ای ایجاد می‌کند که شخص عملکننده نمی‌تواند انکست گردد (1-2). استفاده‌های جدید این سیستم (LED) که بر اساس سیستم‌های استرتوس هستند نوردهی بسیار بازیابی‌پذیر است که این ایده با بد می‌تواند سالنی برای راه اندازی در ارتباط با سایر مطالعات گشایش‌ها در سال 1088 ارائه و اثبات شده و با استفاده از LED و یک دستگاه هالوژنی بررسی شد. آنها بیان کردند حالت ایجاد شده در پالای چپ توصیف استفاده‌های بالا LED از استفاده‌ها و سیستم‌های مت. با شدت نور و صد میلی‌وات سانتی‌متر QTH استفاده می‌شود. شدت بإنه می‌تواند استفاده از مقدار کوچک یکی کوچک می‌باشد. در حال حاضر یک میلی‌متر از سر دستگاه مفاهیم شب، بیشترین دمای‌ها مربوط به استفاده با QTH می‌باشد یک میلی‌متر. 0کم در دمای مصرف dei QTH با QTH در ضخامت‌های مختلف و QTH در QTH در QTH ضخامت‌های 5 میلی‌متری شده مربوط به استفاده با PAC و QTH با QTH با PAC و QTH با QTI
مقدار تغییرات دما در دیسکهای عاجی با ضخامت و فواصل مختلف

برگ ۱: بکر سپیماده به ضخامت مورد نظر رسانده شده. به این ترتیب سه عدد دیسک عاجی (دو دیسک عاجی با ضخامت ۵/۰ میلی‌متر و دیسک عاجی با ضخامت ۱/۵ میلی‌متر) تهیه شد. پس از آن مقاطع عاجی آماده شده در درون آب مقرت نگهداری شدند. برای اینکه بتوان فواصل یک تا سه میلی‌متری بین مقاطعهای عاجی و سر دستگاه لایت کیور را به صورت ثابت و دقیق به‌صورت آزمایشی به ضخامتی‌های مورد نظر نگهداری شدند که این ساخته به صورت مربع بوده و در مرکز آن‌ها سوراخی گرد بنا آن‌ها سطح، فاصله سر دستگاه لایت کیور ایجاد شد. برای این‌طور می‌توان حالت فوق از دماسنج ديجيتال لیزری (Scan temp 485 -Dostman electronic,China) که دمای یک نقطه با پرده‌ای از جسم را که لوپ به آن تابیده می‌شد را مشخص کرد. (شکل ۱)

شکل ۱: طرح شماتیکی از نحوه اتصال کرای دما به روی یک صفحه پونولایت، دماسنج دیجیتالی لیزری را به صورت ثابت مانت کرده و نقطه کانونی لیزر دستگاه بر روی صفحه پونولایت مشخص شد. در این نقطه شیاری برای گیر صفحات آزمایشی از تعریف ایجاد گردید سپس دیسکهای عاجی با کمک موم و نشتری بر روی سوراخ گرد صفحه آزمایشی قبلاً راسد. آزمایش بر روی صورتی در شیار پونولایت قرار می‌گیرد. که نقطه کانونی لیزر دستگاه تمومش دقتی بر روی مرکز فاصله دیسک عاجی قرار گرفته باشد. پس از آن دستگاه لایت کیور مورد نظر توسط یک گرد و پرده گذاشته و در طرف دیگر صفحه کرایی بر روی دیسک عاجی بروی این‌تریش حفرات از
جدول 1: مقایسه میانگین تغییرات دما در فواصل مختلف از سر دستانه در ضخامت‌های مختلف عاج در دستانه LED

<table>
<thead>
<tr>
<th>تعداد</th>
<th>ضخامت</th>
<th>انحراف معیار</th>
<th>میانگین</th>
<th>فاصله</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1/46</td>
<td>1/138</td>
<td>0/125</td>
</tr>
<tr>
<td>1/5</td>
<td>9/53</td>
<td>0/47</td>
<td>1/35</td>
<td>0/115</td>
</tr>
<tr>
<td>مجموع</td>
<td>11/02</td>
<td>1/69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0/5</td>
<td>1/52</td>
<td>0/88</td>
<td>1/36</td>
</tr>
<tr>
<td>0/5</td>
<td>9/13</td>
<td>0/76</td>
<td>0/65</td>
<td>0/29</td>
</tr>
<tr>
<td>مجموع</td>
<td>1/11</td>
<td>0/97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0/5</td>
<td>1/66</td>
<td>0/85</td>
<td>1/35</td>
</tr>
<tr>
<td>0/5</td>
<td>9/16</td>
<td>0/75</td>
<td>0/66</td>
<td>0/29</td>
</tr>
<tr>
<td>مجموع</td>
<td>1/81</td>
<td>0/96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0/5</td>
<td>1/80</td>
<td>0/85</td>
<td>1/35</td>
</tr>
<tr>
<td>0/5</td>
<td>9/18</td>
<td>0/73</td>
<td>0/66</td>
<td>0/29</td>
</tr>
<tr>
<td>مجموع</td>
<td>1/77</td>
<td>0/95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2: مقایسه میانگین تغییرات دما در فواصل مختلف از سر دستانه در ضخامت‌های مختلف عاج در دستانه QTH

<table>
<thead>
<tr>
<th>تعداد</th>
<th>ضخامت</th>
<th>انحراف معیار</th>
<th>میانگین</th>
<th>فاصله</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1/10</td>
<td>0/28</td>
<td>0/85</td>
</tr>
<tr>
<td>1/5</td>
<td>9/77</td>
<td>0/77</td>
<td>0/59</td>
<td>0/29</td>
</tr>
<tr>
<td>مجموع</td>
<td>0/84</td>
<td>0/87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0/5</td>
<td>1/89</td>
<td>0/79</td>
<td>0/57</td>
</tr>
<tr>
<td>0/5</td>
<td>9/76</td>
<td>0/77</td>
<td>0/59</td>
<td>0/29</td>
</tr>
<tr>
<td>مجموع</td>
<td>0/85</td>
<td>0/87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0/5</td>
<td>1/77</td>
<td>0/79</td>
<td>0/57</td>
</tr>
<tr>
<td>0/5</td>
<td>9/76</td>
<td>0/77</td>
<td>0/59</td>
<td>0/29</td>
</tr>
<tr>
<td>مجموع</td>
<td>0/85</td>
<td>0/87</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

مجله دندانپزشکی جامعه اسلامی دندانپزشکان/ دوره 23/ شماره 3/ تابستان 1391
مقایسه تغییرات دما در دستگاه‌های عاجی با ضخامت و فواصل مختلف

آزمون‌های Duncan و ANOVA (2way) استفاده شد. که تأثیر انواع دما به‌صورت جداگانه بر دو دستگاه LED و QTH بیشترین افزایش دما در دستگاه LED در فاصله یک میلی‌متر سر دستگاه لایت‌کیور از دیسک عاجی بود.

در QTH متوسط دما در دستگاه LED در فاصله سه میلی‌متر سر دستگاه QTH. با استفاده از دستگاه لایت‌کیور از دیسک عاجی بود.

ANOVA 2way نتایج به دست آمده از آزمون آماری نشان داد که هم فاصله هم ضخامت دیسک‌های عاجی در دو بر افزایش دما ایجاد شده در دو دستگاه LED و QTH تأثیر معنی‌داری دارند (P<0.1).

با مقایسه نتایج دست آمده مشاهده شد که میانگین افزایش حرارت در فواصل معین با کم شدن ضخامت عاجی در هر آماری معنی‌دار بود (P<0.01). در QTH بیشتر شده است. (P<0.01).

به میزان ضخامت‌های مختلف دما در DQTH متوسط دما در دستگاه LED و QTH میزان ضخامتها و فواصل معین دستگاه می‌باشد. افزایش حرارت بیشتری نسبت به QTH و احتمال بین آنها معنی‌دار است (P<0.01).

Duncan با مقایسه جزئیات ضخامت بر اساس آزمون در دو دستگاه مشاهده شد که اختلاف دما بین ضخامت در دو میلی‌متر است.

Duncan با مقایسه جزئیات سه فاصله بر اساس آزمون معنی‌دار است. مشخص کرده که اختلاف دما بین فاصله یک میلی‌متر با فاصله دو و سه میلی‌متر از لحاظ آماری معنی‌دار است.

بحث

یکی از مسائلی که در ارتباط توزیع با کیفیت ترمیم‌های هرمین ندانست، دستگاه‌های سخت‌کشّندی توزیع نروی می‌باشد. امروزه بیشتر کارخانه‌ها سرسرده دستگاه‌های لایت‌کیور با معنی‌دار دستگاه‌هایی با شدت بالای هزار میلی‌وات/سانتی‌متر
افزایش دما با دستگاه LED QTH در بستر از دستگاه هزار و صد میلیوات/سانتیمترمی و دستگاه QTH، همتاسبس و پنجه میلیوات/سانتیمترمی بود (14). که با نتایج مطالعه حاضر یکسان نبود. علت را می‌توان زمان تا بیشتر مفاوت دستگاه دانست زیرا زمان تا بیشتر در دستگاه QTH درجه ثانیه و در دستگاه LED ده ثانیه بوده است.

از دیدگاه Santini و همکارانش (11) در تحقیقات قبلی مانند تحقیق بهبود نتایج در درون پالپ چپی تمام دندان‌هایی که تاج آنها ندارند تا بیشتر و ضخامت می‌باشد، از زمان با دستگاه LED بهتر است. از سوی دیگر دمای مورد استفاده در مطالعه حاضر بر روی نیاز به سنتور و با داشتن اشعه لیزر و با ثبت آن بر روی سطح عاج بدون اینکه دمای محیط بر روی آن تأثیر گذرده تغییرات دما را ثبت نمی‌کرد.

در مطالعه حاضر رابطه ضخامت دستگاه‌های عاجی/0/5 و 0/15 میلیمتری با تغییرات دما ایجاد شده تپر بررسی گردید و مشاهده شد که با کاهش ضخامت عاج افزایش دما بیشتر می‌شود و اختلاف دما در بین ضخامت‌های عاجی مختلف از لحاظ آماری معنی‌دار است (0/0001). از طرفی با مقایسه تغییرات دما در سه ضخامت عاجی بر اساس مشخصه Duncan آماری 0/5 و 0/15 میلیمتری از لحاظ آماری معنی‌دار است. پس در ترمیم هفتها در صورتی که ضخامت عاج باقی‌مانده کمتر از 0/5 میلیمتر باشد تمهیدات جراحی بیشتری برای حفاظت از پالپ دندان در نظر گرفته شود.

و همکارانش در مطالعه‌های که درایو ضخامت‌های Aguiar عاجی صفر، یک، دو و سه میلی‌متر انجام داده‌اند گزارش کردند که در عاج ضخامت کمترین فاصله دما را دارند. (19) که با نتایج مطالعه حاضر هماهنگ است.

افزایش دما ایجاد شده بر روی دستگاه QTH 7/91 درجه سانتی‌گراد بود که 2/3 درجه بیشتر از دمای بحرانی 5/5 درجه سانتی‌گراد است. در حالی که در بستر این دانه‌گیری دما با ضخامت عاج/0/5 میلی‌متر و قابلیت به دستگاه LED (دهم‌درجه سانتی‌گراد بیشتر با مقطع عاج) افزایش دما ایجاد شده 7/8 درجه سانتی‌گراد بود که 1/68 درجه بیشتر از دمای بحرانی 5/5 درجه است. با توجه به شدت نور خروجی بیشتر دستگاه LED (هزار و پانصد میلیوات/سانتی‌متر) (جهش صدر میلی‌متر QTH) (جهش صدر میلی‌متر سانتی‌مترمی) مشاهده می‌شود که تغییرات دما در دستگاه QTH به طور قابل ملاحظه‌ای بیشتر از LED می‌باشد که این مؤثر ابتدا مستقیماً شدت نور خروجی دستگاه با سایه‌گیری پالپ در طی استفاده از دستگاه‌های Yazici و Guiraldo در حالی که اثر دستگاه‌های لایه کوری پالپ نشان دهنده مقدار افزایش ضخامت و ضخامت‌های عاجی مختلف نیاز به تغییرات دما را مقایسه گردید مطابقت دارد. در مطالعه آنها شدت تابش نور خروجی و زمان تاخیر، مهار می‌شوند عوامل افزایش دما در طی کریزینگ گرزارش شدید. (15). در مطالعه‌ای که توسط Millen و همکارانش در سال 2007 انجام شد جریان‌های ناشی از دستگاه LED بیشتر با دستگاه QTH بهتر بهبود چهارصد و پنجه میلی‌متر سانتی‌مترمی و دستگاه QTH با دستگاه LED چهارصد و صد میلی‌متر سانتی‌مترمی و دستگاه LED به‌طور قابل ملاحظه‌ی بیشتر از دستگاه LED (0/008) شده با بستر نور خروجی بیشتر از دستگاه LED (16) که در تحقیق‌های انجام داده‌اند Durey QTH دما پالپ دندان را با دستگاه LED و بررسی کردند. در این مطالعه افزایش دما پالپ دندان همان‌طور استفاده از دو دستگاه LED نوع بود و بین دو دستگاه LED تفاوت قابل ملاحظه‌ی مشاهده نگردید. (17). تناوب این بررسی هم با مطالعه حاضر مطابقت دارد. اما برای لحاظ این مطالعات، در مطالعه‌ای که Dorgan و همکارانش در سال 2009 انجام دادند
REFERENCES

