مقایسه تیپ‌های دما در دیسک‌های عاجی با پوشش و فواصل مختلف از سر دستگاه

لایت کیور با دو دستگاه لایت کیور متفاوت

چکیده

زمینه و هدف: با انفزایش دما در طول گریز کمپیوتر، ترمیم‌های دامادی معمولی را می‌تواند به تأخیر افتاد. هدف از این مطالعه اندازه‌گیری انفزایش دما در سنگ، کارکرد مشابه در سه نوع دیسک‌های مختلف با پوشش، دیسک‌های عاجی، دیسک‌های فتاول، تریک و تحلیل بررسی شد.

روش بررسی: در این مطالعه، نمونه‌های تجربی از دسگاه QTH به شدت حرارت (60) در سطح دسگاه نشان داد. حرارت و یکسانی میلی وایت ساترمریز و دسگاه QTH در 60% و 15 میلی‌متر بیایند. تغییرات در وضعیت و فاصله سر دستگاه لایت کیور و دیسک‌های عاجی تنظیم و اندازه‌گیری بزرگ‌تری در الیاف زیستی تهیه شد. اندازه‌گیری تجاری و تحلیل داده‌ها

یافته‌ها: نتایج دست آمده از آزمونهای آماری نشان داد که هم فاصله هم ضخامت دیسک‌های عاجی، در دو انفزایش دما ایجاد شده در دو دستگاه نشان داد. ANOVA(2Way)، Duncan تحلیل داده‌ها در صورتی که در دو دستگاه سهمیه‌های ممکن از دیسک‌های عاجی، دیسک‌های فتاول و دیسک‌های عاجی تفاوت مشابه داشتند. اندازه‌گیری کلی و کلیه‌ها: دما - لایت کیور - عاج

اصل نهایی: 1391/7/9

نوتیند سمنول: دکتر سمانه علی‌ای، گروه آموزش ترمیمی دانشکده دندانپزشکی دانشگاه آزاد اسلامی واحد خوراسان

e.mail:samaneh_alaei@yahoo.com

مقدمه

سالمت دندان از جنبه‌های مختلف در ارتقاء مستقیم با توجه به پایداری آن می‌باشد. درمان‌های جراحی و ترمیمی، تجزیه و تحلیل فیزیکی، اجرای و حرارتی برای پال دندان ایجاد می‌کند که در این میان اندازه‌گیری حرارت داخل پال و وجود دارد. مطالعات نشان داده‌اند که انفزایش دما پال باید از اهمیت زیادی برخوردار است. به نظر می‌رسد که باید طبق بحثی برای درجه حرارت داخل پال وجود دارد. مطالعات نشان داده‌اند که اندازه‌گیری دما پال باید از 8 درجه سانتی‌گراد به آسانی منجر به مکمل سلولی خواهند شد. در مطالعات اولیه‌ای که توسط Cohen و Zach به‌کار رفت، گزارش داده شد که
در این مطالعه داخل‌الخانه تجربه از سعی در کاهش علائم سالم و بدون پوسیدگی که در محلول تیموکل ۲۰٪ نگه‌داری شده بودند استفاده کردند. اینجا ضخامت مبتنی بردنانان توسط فرز مایورال به‌صرفه شناخته شده از طرف شما و تقریباً سطح صاف از مقعد عرضی تاج دندان دارسته‌اند. سطح مقعد عرضی تاج دندان و آکریل به‌صرفه شناخته شده از طرف شما و تقریباً سطح صاف از مقعد عرضی تاج دندان دارسته‌اند. اینجهای در درون آکریل ذخیره‌سازی می‌باشد.

روش بررسی

در این مطالعه داخل‌الخانه تجربه از سعی در کاهش علائم سالم و بدون پوسیدگی که در محلول تیموکل ۲۰٪ نگه‌داری شده بودند استفاده کردند. اینجا ضخامت مبتنی بردنانان توسط فرز مایورال به‌صرفه شناخته شده از طرف شما و تقریباً سطح صاف از مقعد عرضی تاج دندان دارسته‌اند. سطح مقعد عرضی تاج دندان و آکریل به‌صرفه شناخته شده از طرف شما و تقریباً سطح صاف از مقعد عرضی تاج دندان دارسته‌اند. سطح مقعد عرضی تاج دندان و آکریل به‌صرفه شناخته شده از طرف شما و تقریباً سطح صاف از مقعد عرضی تاج دندان دارسته‌اند. اینجهای در درون آکریل ذخیره‌سازی می‌باشد.
برای اینکه بتوان فواصل یک تا سه بیلی‌متری بین مقطع‌های عاجی و سر دستگاه لاپ‌تیپ کور را به صورت ثابت و دقیق باشند، صفحات آن‌گونه به ضخامت‌های واسطه مورد نظر به سطح این دستگاه لاپ‌تیپ کور نصب می‌شود. این صفحات به صورت مربع توسط در مرکز آن‌ها موجود است. اندازه‌گیری افزایش حرارت از دسترسی ذخیره لیزری (Scan temp 485–Dostman electronic, China) در کدام یک نقطه است با محاسبه از جسم را که آن ناحیه می‌شود را مشخص می‌کند. (شکل 1)

شکل 1: درجه حرارت گرمایی در داخل دستگاه کوری دما

پایه‌ها
نتایج این مطالعه به صورت میانگین تغییرات دما بر حسب درجه سانتی‌گراد ارائه شده است. با توجه به سه ضخامت دیسک عاجی (1/5، 1/100، و 1/2 میلی‌متر)، ضخامت در داخل دستگاه لاپ‌تیپ کور را دیسک عاجی (1/100، و 1/2 میلی‌متر) دو نوع دستگاه لاپ‌تیپ کور (LED - QTH) 18 حالت مختلف با آزمون ANOVA بررسی شد. نتایج حاصل در جدول 1 و 2 مشاهده می‌شود. همچنین برای بررسی اثر ضخامت‌های مختلف دیسک عاجی و فواصل مختلف سر دستگاه لاپ‌تیپ کور با دیسک عاجی بر روی اندازه‌گیری حرارت از

برهک سمبلهای به ضخامت مورد تنظیم رسانده شد. به این ترتیب سه عدد دیسک عاجی (میلی‌متر) دیسک عاجی با ضخامت 1/15، 1/100، و 1/2 میلی‌متر و ده دیسک عاجی با ضخامت 1/15 میلی‌متر) به ترتیب یک بار از آن مقاطع عاجی آماده شده در دوران آپر‌آپ تهیه و نگهداری شدند. برای اینکه بتوان فواصل یک تا سه بیلی‌متری بین مقطع‌های عاجی و سر دستگاه لاپ‌تیپ کور را به صورت ثابت و دقیق باشند، صفحات آن‌گونه به ضخامت‌های واسطه مورد نظر به سطح این دستگاه لاپ‌تیپ کور نصب می‌شود. این صفحات به صورت مربع توسط در مرکز آن‌ها موجود است. اندازه‌گیری افزایش حرارت از دسترسی ذخیره لیزری (Scan temp 485–Dostman electronic, China) در کدام یک نقطه است با محاسبه از جسم را که آن ناحیه می‌شود را مشخص می‌کند. (شکل 1)

شکل 1: طرح شماتیک از نحوه اندازه‌گیری دما

بر روی یک صفحه بیولوژیک، دسترسی ذخیره لیزری را به صورت ثابت مانند چرخش و بکارگیری لیزر دستگاه بر روی صفحه بیولوژیک مشخص شد. در این نقطه شیرای برای گیر صفحات آن‌گونه مربعی تصویر ایجاد گردید سپس دستگاه های با کمک موم چسب بر روی سوراخ گرد صفحه آن‌گونه پیچیده شد. آن‌گونه مربوط به صورتی در شیار بیولوژیک قرار می‌گیرد که نقطه کانونی لیزر دستگاه ترمومتر دقیقاً بر روی مرکز مقطع دیسک عاجی قرار گرفته باشد. پس از آن دستگاه لاپ‌تیپ کور مورد نظر توسط یک باروی نگهدارنده در طرف نیک مقطع صفحه آن‌گونه، به صورتی که سر خروجی دستگاه به موازات سوراخ آن‌گونه و چسبیده
جدول 1: مقایسه میانگین تغییرات دما در فواصل مختلف از سر دستکار در ضخامت‌های مختلف عاج در دستکاه

ANOVA (2way) توسط آنالیز

<table>
<thead>
<tr>
<th>فاصله</th>
<th>ضخامت</th>
<th>میانگین</th>
<th>انحراف معیار</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/5</td>
<td>9/15</td>
<td>6/87</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>1/5</td>
<td>9/15</td>
<td>6/87</td>
<td>10</td>
</tr>
<tr>
<td>مجموع</td>
<td></td>
<td>11/10</td>
<td>6/89</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>1/5</td>
<td>9/15</td>
<td>6/87</td>
<td>10</td>
</tr>
<tr>
<td>مجموع</td>
<td></td>
<td>11/10</td>
<td>6/89</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>1/5</td>
<td>9/15</td>
<td>6/87</td>
<td>10</td>
</tr>
<tr>
<td>مجموع</td>
<td></td>
<td>11/10</td>
<td>6/89</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>1/5</td>
<td>9/15</td>
<td>6/87</td>
<td>10</td>
</tr>
<tr>
<td>مجموع</td>
<td></td>
<td>11/10</td>
<td>6/89</td>
<td>30</td>
</tr>
</tbody>
</table>

جدول 2: مقایسه میانگین تغییرات دما در فواصل مختلف از سر دستکار در ضخامت‌های مختلف عاج در دستکاه

ANOVA (2way)

<table>
<thead>
<tr>
<th>فاصله</th>
<th>ضخامت</th>
<th>میانگین</th>
<th>انحراف معیار</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/5</td>
<td>9/15</td>
<td>6/87</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>1/5</td>
<td>9/15</td>
<td>6/87</td>
<td>10</td>
</tr>
<tr>
<td>مجموع</td>
<td></td>
<td>11/10</td>
<td>6/89</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>1/5</td>
<td>9/15</td>
<td>6/87</td>
<td>10</td>
</tr>
<tr>
<td>مجموع</td>
<td></td>
<td>11/10</td>
<td>6/89</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>1/5</td>
<td>9/15</td>
<td>6/87</td>
<td>10</td>
</tr>
<tr>
<td>مجموع</td>
<td></td>
<td>11/10</td>
<td>6/89</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>1/5</td>
<td>9/15</td>
<td>6/87</td>
<td>10</td>
</tr>
<tr>
<td>مجموع</td>
<td></td>
<td>11/10</td>
<td>6/89</td>
<td>30</td>
</tr>
</tbody>
</table>

مجله دندانپزشکی جامعه اسلامی دندانپزشکان/ دوره 22. شماره 3. پاییز 1391
مقایسه تغییرات دما در دستگاه‌های عاجی با ضخامت و فواصل مختلف

۲۷۱

آزمونهای Duncan و ANOVA (2way) استفاده شد. نتایج نشان داد که تأثیر این دو عامل به صورت چندگانه بر دو دستگاه LED و QTH بیشترین افزایش دما در دستگاه LED در فاصله 1/5 میلیمتر سر دستگاه لایت کیور از دستگاه عاجی به ضخامت 5/0 میلیمتر بود. (1/47-12درجه سانتی‌گراد). کمترین افزایش دما در دستگاه QTH در فاصله سه میلیمتر سر دستگاه لایت کیور از دستگاه عاجی به ضخامت 1/5 میلیمتر بود. (2/99-1/3درجه سانتی‌گراد).

ANOVA 2way نتایج به دست آمده از آزمون آماری نشان داد که هم فاصله ضخامت دیسک های عاجی در دو بر افزایش دما ایجاد شده در هر دو دستگاه LED و QTH تأثیر معنی‌داری دارد. (201/1–0/001)<P.

با مقایسه نتایج بیشین آدم مشاهده شد که میانگین افزایش حرارت در فواصل معین با کم شدن ضخامت عاجی در هر ۵/0 میلیمتر برای LED و QTH بیشتر شد. (201/1–0/001)<P. همچنین در فواصل معین، دستگاه QTH موجب افزایش حرارت بیشتری نسبت به LED و QTH ایجاد شده و اخلاق بین آنها معنی دار است. (201/1–0/001)<P. در اینجا مشاهده شد که با مدل و QTH، دستگاه‌های عاجی، افزایش فاصله موجب کاهش حرارت شده و اخلاق بین آنها معنی دار است (201/1–0/001)<P.

Duncan با مقایسه جزئیات سه ضخامت بر اساس آزمون با دو دستگاه مشاهده شد که اختلاف به متغیر ضخامت 1/5 و ۱/۰ میلیمتر از لحاظ آماری معنی دار است.

Duncan با مقایسه جزئیات سه فاصله بر اساس آزمون مشخص گردید که اختلاف دما بین فاصله یک میلیمتر با فاصله دوم و سه میلیمتر از لحاظ آماری معنی دار است.

بحث

یکی از مسائلی که در ارتباط به دیگر افزایش دما در دستگاه‌های عاجی با ضخامت و فواصل مختلف

در ارتباط به بررسی کارایی‌های سازندی دستگاه‌های LED و QTH ضخامت 1/5 میلیمتر و فاصله سه میلیمتر سر دستگاه مقطع عاج (201/1-0/001)<P.

یکی از مسائلی که در ارتباط به دیگر افزایش دما در دستگاه‌های عاجی با ضخامت و فواصل مختلف

مجله دندانپزشکی جامعه اسلامی دندانپزشکان؛ دوره ۳ شماره ۳ پاییز ۱۳۹۱

Downloaded from joda.ir at 11:21 +0430 on Friday April 24th 2020
افزایش دما با دستگاه QTH را بیشتر از دستگاه هزار و صد LED بهتر نشان می‌دهد. در این مطالعه شدت دستگاه هزار و صد LED قابل قبول بود و کاهش ضخامت هر متر مربع دستگاه QTH در مطالعه حاضر یکسان بود. در این مطالعه زمان تابش، متقابل دستگاه QTH داشته زیرا زمان تابش در دستگاه QTH به شدت QTH، به طور قابل مشاهده بیشتر از LED همکارش شده است. نتایج تمایل و سانتیمتر/ هزار و صد LED (چهارصد سانتیمتر/ هزار و صد LED) مسئله مشاهده شده که تغییرات در QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه مطالعه دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه تغییرات در دستگاه QTH با نمایشگر LED QTH با طراحی و جامدین مشابه می‌شود. در مطالعه حاضر مطالعه T

Downloaded from jida.ir at 11:21 +0430 on Friday April 24th 2020
REFERENCES


