مقایسه دوز جذبی ارگانهای هدف در رادیوگرافی لئال سفالومتری کانونشال و دیجیتال

دکتر احمدضا طالبی پور- دکتر شیروین سخنری - مهندس منصور جعفری‌زاده - دکتر مرتضی میرزایی - دکتر سحر طالبی

چکیده
زمینه و هدف: به دلیل استفاده و سیاست اخیری اثراتی که در رادیوگرافی لئال سفالومتری با ویژه در درمان ازدستی و جراحی ازدستی، بهبود رادیوگرافی‌های با هدف بستگی به سایر کمیته‌های درمانی با بیماران و پزشکان اهمیت بیشتری دارد. بنابراین هدف از این مطالعه مقایسه دوز جذبی حاصل از رادیوگرافی لئال سفالومتری Digital و Conventional در موارد سر و گردن می‌باشد.

روش بررسی: جهت انجام این مطالعه نجیری از نوع RANO phantom از Cross-over ترموپلاستیک، از شکل فرضی یک میلی‌متری‌های LiF: Mg, Cu, TLD استفاده شد. ترموپلاستیک به هنگام فرآیند پیامدهای TLD محاسبه شد. در خانم‌های دیده تریودینه، پاپتری، هیپوریکار، تا نکته مغز استخوان راموس، اعیانی، هنگامی که چرم و چب ماکزیم و آنلیگ گردید. در مجموع از فاصله تنظیم شده، رادیوگرافی نیز با استفاده از RANDO phantom تکثیر در میان‌های دیجیتال (CRANEX Tome, Soredex) و این گروه درب تیست (CRANEX D, Soredex) تهیه شد. میزان اثرات گردیده که تنها عامل دیجیتال استفاده نمی‌کند. از آزمون آماری T-test جهت تحلیل آماری استفاده شد.

نتایج: برای یافتن دوز جذبی این اندام‌ها در روش کانونشال 0.12 ± 0.04 میلی‌سیتروت و در تکثیر دیجیتال 0.12 ± 0.05 میلی‌سیتروت Digital و Conventional برای یافتن دوز جذبی در تمامی ارگانهای هدف به جز عفون تروپین (P = 0.08) در بین دو روش از لحاظ آماری معنی‌دار بوده است (P = 0.05) و سه انواع اصل در دو روش دیجیتال و سفالومتری کانونشال فیلم-

نتیجه‌گیری: به کارگیری سیستم تصویربرداری لئال سفالومتری دیجیتال کاهش دوز چشم‌گیری را در مقایسه با سیستم کانونشال فیلم یافت.

کلیدواژه‌ها: رادیوگرافی لئال سفالومتری، دوز جذبی، رادیوگرافی کانونشال، رادیوگرافی دیجیتال

اصلح نهایی: 1391/11/14

نوبند مسئول: دکتر مریم میرزایی، گروه آموزش رادیولوژی دهان و فک و صورت دانشکده دندانپزشکی دانشگاه آزاد اسلامی واحد تهران

e.mail: maryam_m9237@yahoo.com

فهی، غد برزیک و مغز وجود داشته‌که به اثرات دیرس اشعه ایکس حساس حستند. (1-2) اثرات احتمالی دیرس اشعه X ترمیحی، نه به دلیل با یکنون مقایسه بانکپ درادیوجه تابش‌های غیرضروری مقدمه

به حداکثر رسیدن دون جذبی ارگانهای هدف تابش اشعه ایکس، یکی از دفع‌های اساسی دندانپزشکان و به ویژه متخصصان رادیولوژی فک و صورت می‌باشد. در تابش سر و گردن ارگانهای حیاتی مانند عفون تروپین، مغز استخوان
به شکل استوانه‌ای به اندازه ۲۵۰ میلی‌متر در قسمت‌های مختلف این فانتوم تعبیه شده که دو‌زمتیرها در آن قرار می‌گیرند. (۹)

اشşe X نگران کننده است. برخی از بودن از ریسک ناپیوستگی استفاده از اشعه بیوتیزیون و استفاده از روش و تجهیزاتی که مراحل رادیوگرافی را به شیوه‌ای ایده آل ۳۶۲ کدان، اقتصادی می‌شود. در جهت حفاظت در پرای بارش اشعه و کاهش ذوز در رادیوگرافی تشخیصی است. (۴)

در پارهای مانند عنوان شده است که بر خلاف آنچه در تصویربرداری داخل دهانی دیجیتال صادق است، هیچ کاملاً دوز قابل توجهی با گام‌زنی سیستم‌های فلیم - صفحه دهانی توسط تصویربرداری دیجیتال به دست نمی‌آید (۲ و ۳-۵). در حالی که در مقالاتی دیگر ذوز قابل توجهی هنگام با کارگیری سیستم‌های دیجیتال تاریک‌ساز خارج دهانی کارش را در ۳-۵ استفاده می‌کنند.

به دلیل استفاده ویژه از رادیوگرافی لرزش سفالومتری به ویژه در درمان‌های ارتوپدی و جراحی‌های ارتوگانیک، تهیه رادیوگرافی‌های با بهترین کیفیت بصری به همراه کنترل دوز بایستی بر بیماران و نیز اهداف ویژه‌ای می‌باشد. (۱۰) سسته‌های پژوهشی رادیوگرافی لرزش سفالومتری کانوتشال و دیجیتال دو روش بررسی مطالعه تحقیقی و از مشاهدات در این Cross-Over می‌باشد. در این مطالعه از یک فانتوم سر انسان به نام: RANDO Phantom(Radiation Analog Dosimetry System) (Alderson Research lab, Inc Stamford, Connecticut) استفاده شده است. (۱)

روش بررسی مطالعه تحقیقی و از مشاهدات در این Cross-Over می‌باشد. در این مطالعه از یک فانتوم سر انسان به نام: RANDO Phantom(Radiation Analog Dosimetry System) (Alderson Research lab, Inc Stamford, Connecticut) استفاده شده است. (۱)

راهبرد استفاده از دویم‌ها به این صورت است که ابتدا دویم‌ها با استفاده از کوره گرافیک و در دویم دویست و چهار دجه سانتی‌گراد به مدت بسته دیقی گرافیکه شده و صفر شدن. سپس در مدت ۱۷۳ کیلوگرم با انرژی ۶۹۴ Kev ۶۴۰ میلی‌متر در یک مقدار می‌باشد. نتایج مقدار دویم‌های شدن. پس از پرتویی مجدداً در کوره الکتریکی قرار گرفته و برای مقایسه دویم‌های آنیلینیکی قطعه در بالای سر است.

مقایسه دو جذب‌های هدف در رادیوگرافی لرزش سفالومتری ...
بعد از محاسبات، دوز جثی هر تLD بر حسب میلی سیورت محسوب شد. تLD های مورد استفاده در این مطالعه به تعداد 69 عدد بود که هنوز نسبت به آزمون اشعه زمینی استفاده گردید.

محاسبه دوز دریافتی هر اندام بر اساس فرمول زیر انجام گرفت:

\[\text{TL(net)} = \text{TL(gross)} - \text{TL(BKG)} \]

\[\text{Dose} = \text{TL(net)} \times \text{CF} \times \text{RL0/RL} \]

با استفاده از فرمول فوق دوز دریافتی هر کام از انداهای هدف (Organ dose) هزینه محسوب نمی‌شود. در مطالعه حاضر محاسبات در زمان قرار دوزی‌های اساس کالپیراسیون بازیتی صورت گرفته و به صورت دریافتی هر اندام از فرمول زیر محاسبه می‌شود.

\[\text{TLD} = \text{TL(gross)} \times \text{CF} \]

دوز دریافتی هر اندام به عنوان ضرب میلی سیورت و مقدار مؤثر (Tissue Weight) به دست آمده و به حساب می‌شود. با این حسابات مقدار سیورت کل (Total Dose) به دست می‌آمد.

در لوله تک‌کنده فوتونی قرارگیری کلیکه‌های TLD(BKG) با ابعاد 14×18 می‌باشد.

دوزی‌های و مقدار به شمار موردی از انداهای صفر دوزی‌های نواف پسندگی دارای چربی‌های سیاه (جداره سیاه) در لوله تک‌کنده فوتونی قرارگیری کلیکه‌ها با ابعاد 14×18 می‌باشد.

برای اندازه‌گیری سیورت به استفاده از تLD(BKG) و CF استفاده می‌شود.

\[\text{CF} = \frac{\text{TL(net)}}{\text{TL(gross)}} \]

\[\text{TL(net)} = \text{TL(gross)} - \text{TL(BKG)} \]

\[\text{Dose} = \text{TL(net)} \times \text{CF} \times \text{RL0/RL} \]

با استفاده از این مدل 4000 Harshaw ممکن است تیم‌ها و کاربردهای دیگری را نیز در مطالعه تهیه کنند. نتایج این مطالعه نشان داد که با استفاده از این تیم‌ها می‌تواند به دقت‌های مناسبی برای تعیین دوزی‌های ضروری و به‌طور کلی برای استفاده در پایش‌های مختلف، از جمله پاسخ‌های طبیعی دوزی‌های ضروری، استفاده کند.
مشاهده زدن جذب اركارهای هدف در رادیوگرافی لترال سفالومتری ...

۲۱۸

بیافته ها

آزمون آماری t-Test

تشخیصی تصادفی سفالومتری کانونشال و دیجیتال توسط SPSS (Version 10.0 for Windows, SPSS Inc., Chicago, IL) آزمون آماری t-Test به هدف مقایسه تأثیر کارگیری سیستم لترال سفالومتری دیجیتال و کاهش مقدار امکان‌پذیر است. (۶، 7)

بحث

در مطالعه حاضر که به منظور تعیین تأثیر کارگیری (CCD) سیستم رادیوگرافی لترال سفالومتری دیجیتال مستقیم و سیستم فیلم-صفحه کانونشال بر میزان دوز جذبی انسانی در بررسی تجانس و توانایی کارگیری سیستم تصورپردازی جوهردار و به کارگیری سیستم تصورپردازی لترال سفالومتری دیجیتال کاهش دوز و سطح برشتی را در مقایسه با سیستم کانونشال فیلم-صفحه ترتیبی می‌دهد. (۶) در این مطالعه نیز رادیوگرافی سفالومتری دیجیتال دوز کاهشی را در مقایسه با سیستم کانونشال فیلم-صفحه ترتیبی می‌دهد. (۶)

این تحقیق از ارتباط مناسبی میان کاهش دوز از لحظه تشییع است. اگر عرض کلی ناحیه اسکله نهایت دمای دست سیستم لترال سفالومتری دیجیتال (صد و هشتاد میلی‌متر) و ارتقا

جله دندانپزشکی جامعه اسلامی دندانپزشکان، شماره ۲۴، شماره ۲۴، پاییز ۱۳۹۲
جدول 1: میانگین و انحراف معیار دوز جذبی (mSv) بر حسب اندام مورد بررسی در دو روش کانونشال و دیجیتال

<table>
<thead>
<tr>
<th>انحراف استاندارد</th>
<th>میانگین</th>
<th>سطح هیپوسی</th>
<th>پ.ت.</th>
<th>t</th>
<th>پ.ت.</th>
<th>t</th>
<th>پ.ت.</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>کانونشال میانگین اندام های</td>
<td>3.20 ± 0.32</td>
<td>3.10 ± 0.30</td>
</tr>
<tr>
<td>دیجیتال</td>
<td>3.20 ± 0.32</td>
<td>3.10 ± 0.30</td>
</tr>
</tbody>
</table>

نمودار 1: میانگین دوز جذبی (mSv) بر حسب اندام مورد بررسی در دو روش کانونشال و دیجیتال

مکان انجام شد مقایسه‌ای بین سیستم رادیوگرافی لترال (PSP) و غیرمستقیم (CCD) سطح‌های دیجیتال مستقیم دوز بالاتری را در مقایسه با سیستم PSP دیجیتال مستقیم دوز بالاتری را در مقایسه با سیستم CCD نتیجه می‌دهد. در حالی که در صورت استفاده از سیستم CCD، دقت جذب تعیین می‌گردد و در صورت استفاده از سیستم PSP، دقت جذب تعیین می‌گردد.

همکاران انجام شد مقایسه‌ای بین سیستم رادیوگرافی لترال (PSP) و غیرمستقیم (CCD) سطح‌های دیجیتال مستقیم دوز بالاتری را در مقایسه با سیستم CCD نتیجه می‌دهد. در حالی که در صورت استفاده از سیستم CCD، دقت جذب تعیین می‌گردد و در صورت استفاده از سیستم PSP، دقت جذب تعیین می‌گردد.

منبع: داژیلیزشکی جامعه اسلامی دندانپزشکان/دوره 25 شماره 3 پاییز 1392
نتایج مطالعه حاضر همکاریان دارد (9) در یک مطالعه دیگر در سال 2001 که توسط Visser و همکاران صورت گرفت نیاز تغییر مشابهی باین مطالعه به دست آمد و مشخص گردید که سیستم رادیوگرافی لترال سفالومتری دیجیتال مستقیم در مقایسه با سیستم فیلم- CCDB با سرعت چهار برابر دیجیتال با نصف کاذب می‌دهد و از نظر حفاظت در برای اشعه از سیستم کاذب سنجش برتری یافته است (7).

نتیجه‌گیری

تأثیر معنی‌دار از لحاظ میزان دون‌جهنی اندام‌های میان سیستم تصویربرداری لترال سفالومتری کانونشمال و دیجیتال وجود دارد و به ویژه سیستم سیستم تصویربرداری لترال سفالومتری دیجیتال کاذب دون‌جهنی چشمگیری را در مقایسه به سیستم کانونشمال در صفحه تبادل و دیده می‌شود.

لیست دیجیتال دیجیتال در تبادل و دیده می‌شود.

مقدار دوز جنبی ارکان‌های هدف در رادیوگرافی لترال سفالومتری

mGy است و به صورت Gy cm² و گاهی بر حسب Gy cm² به طور مقدماتی اکثر ارزیابی دیجیتال و به سیستم تصویربرداری DAP سطح تلك و smuggled با استفاده از می‌توان دوز دیجیتال در ارکان‌ها به طور مقدماتی و با دقت بالای دقت به مسیر خروجی اشعه از دستگاه اشعه x می‌باشد.
REFERENCES