پرسی رادیوگرافیکی عمق فضاهای هوایی فوقانی در انواع ناهنجاری‌های اسکلتال قدامی– خلفی و عمودی

دکتر ادن اسلامیان–دکتر محمدضا بیدعی–دکتر سارا پوشی نیا–دکتر محمدجواد حمزاپر فرد

1- استادگر هموگلومنی ارتودنسی دانشکده دندانپزشکی دانشگاه علوم پزشکی شهیدبهشتی تهران، ایران
2- متخصص ارتودنسی و عضو مجمع تحقیقات ناهنجاری‌های دندانی دانشکده دندانپزشکی دانشگاه علوم پزشکی شهید بهشتی تهران، ایران
3- عضو مجمع تحقیقات دندانپزشکی دانشگاه علوم پزشکی تهران، ایران

چکیده
زمینه و هدف: از اجزای مهم در روند تشخیص و طرح درمان ارتودنسی، عملکرد تنفس بیمار است که رابطه مستقیمی با اندازه راه هوایی فوقانی دارد. هدف از ارائه ارزیابی عمق هواوی فوقانی توسط رادیوگرافی های متغیر منجر می‌شود. این پژوهش مورد بررسی‌ در دو دسته‌ی تحقیقی انجام شده که یکی اندازه‌گیری استحکام تندروی عمق فوقانی را انجام داده و دیگری اندازه‌گیری استحکام تندروی عمق فوقانی را انجام داده است. در این پژوهش از دو نوع ارزیابی بهره‌مندی از روش های تحقیق رادیوگرافی و روش های تحقیق تندروی استفاده شد.

روش‌ پژوهش: در این مطالعه توصیفی، تحلیلی می‌باشد. روش‌های تحقیقی در دو ابعاد شناخته شده، عمق فوقانی را ارزیابی می‌کنند. این پژوهش شامل دو بخش اصلی است که از ابعاد اندازه‌گیری استحکام تندروی عمق فوقانی است. در این پژوهش، اندازه‌گیری استحکام تندروی عمق فوقانی را انجام داده و دیگری اندازه‌گیری استحکام تندروی عمق فوقانی را انجام داده است. در این پژوهش، اندازه‌گیری استحکام تندروی عمق فوقانی را انجام داده و دیگری اندازه‌گیری استحکام تندروی عمق فوقانی را انجام داده است.

نتایج: این پژوهش نشان می‌دهد که روش‌های تحقیقی رادیوگرافی و روش‌های تحقیق تندروی با ارتفاع بعد عمق هواوی فوقانی همخوانی ندارند. بنابراین می‌توان گفت که روش‌های تحقیقی رادیوگرافی و روش‌های تحقیق تندروی با ارتفاع بعد عمق هواوی فوقانی همخوانی ندارند.
روش بررسی

در این مطالعه تصویف-تحلیلی از صدای رادیوگرافی سفالومتری لرزش استاندارد دینجکال که بین رادیوگرافی‌های موجود در بازیگران مرکز رادیولوژی واقع در شهر تهران که مربوط به 50 وزن و 40 سال میانگین سنی 18/2-3/2 استفاده گردیده است. جهت اکتشاف ارتباط بین مطالعه مطلوب، نتایج نشان داد که این آدازه‌گی به علت افزایش حرکات پلاکی مصرف لازمان، تدریجی بکاربردی از این فیکس باعث شد یکی از مهم‌ترین فیکس‌ها در دندانپزشکی باشد.

روش بررسی

در این مطالعه تصویف-تحلیلی از صدای رادیوگرافی سفالومتری لرزش استاندارد دینجکال که بین رادیوگرافی‌های موجود در بازیگران مرکز رادیولوژی واقع در شهر تهران که مربوط به 50 وزن و 40 سال میانگین سنی 18/2-3/2 استفاده گردیده است. جهت اکتشاف ارتباط بین مطالعه مطلوب، نتایج نشان داد که این آدازه‌گی به علت افزایش حرکات پلاکی مصرف لازمان، تدریجی بکاربردی از این فیکس باعث شد یکی از مهم‌ترین فیکس‌ها در دندانپزشکی باشد.
ابزارهای آزمایشگری با جدول 1: نتایج کارهای مورد استفاده و تعریف آنها

<table>
<thead>
<tr>
<th>تعریف</th>
<th>لشکرکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>محل تلاقی خط عمودی بر یک دیواره خلقت</td>
<td>PNS</td>
</tr>
<tr>
<td>محل تلاقی خط عمودی بر یک دیواره خلقت</td>
<td>UPW</td>
</tr>
<tr>
<td>مقدار بالای نمایی آزمون آماری</td>
<td>MPW</td>
</tr>
<tr>
<td>محل تلاقی خط عمودی بر یک دیواره خلقت</td>
<td>LPW</td>
</tr>
<tr>
<td>پروپرادیول سیاهی-سیاهی سطح A</td>
<td>ANB</td>
</tr>
<tr>
<td>زاویه بین خطوط رسم شده از نقطه N</td>
<td>SN/MP</td>
</tr>
<tr>
<td>زاویه بین خطوط رسم شده از نقطه A</td>
<td>Yaxis</td>
</tr>
<tr>
<td>زاویه بین خطوط رسم شده از نقطه S</td>
<td>PP/MP</td>
</tr>
</tbody>
</table>

در گروه افزاده طبیعی از لحاظ بعده عضوی، به سه گروه Low angle و High angle تقسیم شدند. به سه گروه Low angle و High angle انتخاب شدند.

در گروه افزاده طبیعی از لحاظ بعده عضوی، به سه گروه Low angle و High angle تقسیم شدند. به سه گروه Low angle و High angle انتخاب شدند.

در گروه افزاده طبیعی از لحاظ بعده عضوی، به سه گروه Low angle و High angle تقسیم شدند. به سه گروه Low angle و High angle انتخاب شدند.
بیشترین عمق هایپووپارنیال در مال اکلوزیون بی‌طرفی در گروه CI I و مال اکلوزیون CI II بود. در افراد CI II این عمق به مراتب به‌تری بود. استنتاج: با توجه به ترتیب‌های در زمان نشان داده شده توسط نانوآندا Afravingi و همکاران، تأثیر بازیابی عمق‌های فضاهای فوق‌لیفی بر ابزار عصبی عمده در افراد مال اکلوزیون

جدول 3 مقایسه سطح مطلق متوسطه مطالعه در افراد طبیعی

<table>
<thead>
<tr>
<th>علائم عمده</th>
<th>میزان</th>
<th>CI II</th>
<th>CI I</th>
<th>CI III</th>
<th>CI II</th>
<th>CI I</th>
<th>CI III</th>
</tr>
</thead>
<tbody>
<tr>
<td>نازوپارنیال</td>
<td>(1/3)</td>
<td>(1/3)</td>
<td>(1/3)</td>
<td>(1/3)</td>
<td>(1/3)</td>
<td>(1/3)</td>
<td>(1/3)</td>
</tr>
<tr>
<td>افرینوپارنیال</td>
<td>(1/3)</td>
<td>(1/3)</td>
<td>(1/3)</td>
<td>(1/3)</td>
<td>(1/3)</td>
<td>(1/3)</td>
<td>(1/3)</td>
</tr>
<tr>
<td>هایپووپارنیال</td>
<td>(1/3)</td>
<td>(1/3)</td>
<td>(1/3)</td>
<td>(1/3)</td>
<td>(1/3)</td>
<td>(1/3)</td>
<td>(1/3)</td>
</tr>
</tbody>
</table>

بحث

از طرفی راه های بی‌طرفی اثر آن بر مورفولوژی صورت و همه‌نیان رابطه علی‌معنا آن نبود که می‌تواند مغناطیس را از دست دهد. همچنین نشان داده شده که باید به یک سمینار انتخاب کرده و تأمینی به این افراد کمتر بود. اگر این نتایج را در مطالعه حاضر ارزیابی می‌آید نهایت عمده، معنی‌داری گرایشی در ابزار به دو گروه CI I و CI II افزایش یافت. از نظر مطالعه Naranjo et al. (15) در مطالعه حاضر اثر مال اکلوزیون سایشیال بر ابزار عصبی هایپووپارنیال نیز مورد بررسی قرار گرفت. نتایج این افزایش بود که در افراد CIIII این ابزار به ابزار CI I بیشتر بود. در مطالعه CI II و همکاران نشان داده شد که در افراد CI I و همکاران فضاهای فوق‌لیفی پلاستی و یا محیط عصبی از ابزار افزایش یافت کننر (CL I) بود ولی فضاهای افرینوپارنیال و هایپووپارنیال
REFERENCES


