مقاله دو نوع تراش مارزین (چمفر و شولدر) در مقایسه به شکست رستوریشن‌های تمام سرامیکی IPS-emax

چکیده
زمینه و هدف: یکی از مشکلات روش‌های تمام سرامیکی، امکان شکست آنها در برابر تریلونهای اکلولزی است. این مقاله مقایسات شکست روش‌های تمام سرامیکی IPS-emax در دو نوع آزمایش جنرال و شولدر کرد.

روش بررسی: در این مطالعه از آزمایشگاهی برای کنترل تداخل عوامل چور از گروه چمفر (8/5 میلیمتر) استفاده شد و بیست و یک میلیمتر نسبت به چمفر یکم، تغییر کرد. پس از تهیه شدن سیستم، گرد و درب تهیه شده تحت Universal testing machine بر روی دیای استنشاق تخته و روی دیای رزینی ساختم. پس از آن نمونه‌ها در دستگاه فشار قرار گرفته و در آن توسط آزمایش آنالوگ One-way ANOVA بررسی شدند.

یافته‌ها: نتایج مقایسه شکست در چمفر و شولدر ZirconCAD نشان دادند که در گروه چمفر Press N1436/3 ZirconCAD استفاده شده و در گروه شولدر Press N1435/8؛ البته در آزمون آماری One-way ANOVA N 0/145.2/4 و در گروه شولدر N 0/125/8/0 (p<0.5) مشابه بود.

نتیجه‌گیری: در صورت استفاده از تراش مارزین، فرآیند تراش بر استحکام شکستی روش‌های زیر ویژه‌الخصوصی فیزیکی چمفر و شولدر ZirconCAD تاثیرگذار است. مقایسه شکست در چمفر نشان داد که در آن نمونه‌ها شکست در زیر زاپست و رشته پیش از آن در چمفر رخ داده است.

IPS-emax

کلیدواژه‌ها: چمفر، شولدر، مقایسه، شکست، تراش، تمام سرامیکی، IPS-emax

پذیرش مقاله: 12/23/1392

وصول مقاله: 12/24/1392

نوبت‌برداری نویسنده مقاله: دکتر فرشش کل محمدی، گروه آموزش پروتئزی دانشگاه دندانپزشکی دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران

e.mail.farnoosh.gol@gmail.com

مقدمه
با توجه به خروج‌های بیماران برای داشتن ترمیم‌های مشابه با دندان‌های طبیعی، به ویژه از نظر زیبایی، استفاده از ترمیم‌های تمام سرامیکی روزافزون یافته است. مزیت‌های ترمیم‌های تمام سرامیکی برای ترمیم دندان‌های خرد استفاده شده است. شکست بعضی از روش‌ها در اثر تراش‌های جدید این منبع به روش‌های طبیعی کاهش نشان داده شده است. بنا بر این، تحقیقاتی جدید توسط سرامیک‌های ترمیمی انجام شده است. این تحقیقات جدید نشان می‌دهد که یکی از خصوصیات دندان‌های سرامیک است. روشهای متفاوتی جهت تقویت رستوریشن‌های سرامیکی وجود دارند، از جمله:
طرح بررسی

مطالعه حاضر مطالعاتی آزمایشگاهی می‌باشد که در آن از سه نمونه (A, B, C) یک عدد دارای مواد داخلی آنتی‌بیوتیک و یک عدد حاوی مواد داخلی انتی‌بیوتیک نیست. در ضریب کنترل و یک عدد دارای مواد داخلی آنتی‌بیوتیک و یک عدد حاوی مواد داخلی انتی‌بیوتیک نیست. در ضریب کنترل و یک عدد دارای مواد داخلی آنتی‌بیوتیک و یک عدد حاوی مواد داخلی انتی‌بیوتیک نیست. در ضریب کنترل و یک عدد دارای مواد داخلی آنتی‌بیوتیک و یک عدد حاوی مواد داخلی انتی‌بیوتیک نیست. در ضریب کنترل و یک عدد دارای مواد داخلی آنتی‌بیوتیک و یک عدد حاوی مواد داخلی آنتی‌بیوتیک نیست. در ضریب کنترل و یک عدد دارای مواد داخلی آنتی‌بیوتیک و یک عدد حاوی مواد داخلی آنتی‌بیوتیک نیست. در ضریب کنترل و یک عدد دارای مواد داخلی آنتی‌بیوتیک و یک عدد حاوی مواد داخلی آنتی‌بیوتیک نیست. در ضریب کنترل و یک عدد دارای مواد داخلی آنتی‌بیوتیک و یک عدد حاوی مواد داخلی آنتی‌بیوتیک نیست. در ضریب کنترل و یک عدد دارای مواد داخلی آنتی‌بیوتیک و یک عدد حاوی مواد داخلی آنتی‌بیوتیک نیست. در ضریب کنترل و یک عدد دارای مواد داخلی آنتی‌بیوتیک و یک عدد حاوی مواد داخلی آنتی‌بیوتیک نیست. در ضریب کنترل و یک عدد دارای مواد داخلی آنتی‌بیوتیک و یک عدد حاوی مواد داخلی آنتی‌بیوتیک نیست. در ضریب کنترل و یک عدد دارای مواد داخلی آنتی‌بیوتیک و یک عدد حاوی مواد داخلی آنتی‌بیوتیک نیست. در ضریب کنترل و یک عدد دارای مواد داخلی آنتی‌بیوتیک و یک عدد حاوی مواد داخلی آنتی‌بیوتیک نیست. در ضریب کنترل و یک عدد دارای مواد داخلی آنتی‌بیوتیک و یک عدد حاوی مواد داخلی آنتی‌بیوتیک نیست. در ضریب کنترل و یک عدد دارا...
یکی از موارد مراجعه شده در این مقاله، IP5max و IP5smax را برای داشتن کمی و سهولت تهیه گردد.

استنون نوع بزرگ (GC Fujirem, E.U) دای استون‌ها به‌طور گسترده‌ای در‌قرار داده‌ای دردیدنی‌انجام‌پذیری می‌باشد. بین تریب‌های چهل عدد دای رقیبی و چهل عدد دای از جنس IPS استنون نوع بزرگ در دسترس بود. در نهایت، روش‌های بر روی دای استون‌ها تهیه گردد.

![شکل 1: ختم تراش شلدر (ب)](image1)

![شکل 2: گزار دادن دو لایه موم و ایجاد استیلی قبل از ساخت تری فالکوبیکری (لیف)](image2)

![شکل 3: فالکوبیکری با پلی وینیل سائولوکسان ویکولار (ب)](image3)
دکتر اسدالله احمدزاده و همکاران

پس از تهیه روشکاه، ضخامت آنها با استفاده از چیگ یکسانسازی شد. (21) سپس تطبیق آنها بر روی دایره رزینی با استفاده از سیستم بررسی Stereomicroscope SEM (Leo 1500VP, Germany) در شکل 3 تا کانون بررسی تا 21 سانتیمتری فیلیوم را مورد بررسی استفاده شد.

با حافزه‌ها

میانگین مقاومت به شکست در گره چفر ZirCAD نیویون و تولید شد. (22) زیر این نیویون بود. مقایسه نیروی لازم برای شکست هر یک از نمونه‌ها در دنده و میانگین و انحراف معیار نیروی منجر به شکست در هر یک از چهار گره‌زیر در دنده آزمون آزمونی Kolmogorov-Smirnov با نشان داد که داده‌ها از توزیع نرمال تبعیت می‌کند. از آزمون آماری One-way ANOVA یک داده به شکست در گره‌های مختلف استفاده گردید و در هر یک از گره‌ها

اصل منادی معادله نشان داد: \[P = 0.05 \]

محک شکست هر یک از نمونه‌ها به صورت چشمی بررسی شده. در کور و پرسلم رخ داد و سایر شکست‌ها مخصوصاً در پرسلم بود. در گره شوتدیر زیرچک با دو نمونه، شکست در کور و پرسلم رخ داد. در نمونه گره شوتدیر لیزه‌ها در دنده کریکشده داشت. در کور و پرسلم رخ داد. در گره شوتدیر فقط در یک دنده و نمونه گره شوتدیر فقط در یک دنده گرفته شد.

بحث

یکی از مشکلات پرکه یک‌جانبه تیم سرامیک، امکان شکست آنها در برای نیروهای اکسترالی، و ارتالی است. (23) این مطالعه به شکست چپ ZirCAD در دو نوع ختم روشکاه تیم سرامیکی یافته و ZirCAD روشکاه نیویون. در نشان داد که میانگین مقاومت به شکست در گره چفر ZirCAD نیویون و کور شوتدیر ZirCAD نیویون و تولید شد. (22) زیر این نیویون بود. مقایسه نیروی لازم برای شکست هر یک از نمونه‌ها در دنده و میانگین و انحراف معیار نیروی منجر به شکست در هر یک از چهار گره‌زیر در دنده آزمون آزمونی Kolmogorov-Smirnov با نشان داد که داده‌ها از توزیع نرمال تبعیت می‌کند. از آزمون آماری One-way ANOVA یک داده به شکست در گره‌های مختلف استفاده گردید و در هر یک از گره‌ها

اصل منادی معادله نشان داد: \[P = 0.05 \]

محک شکست هر یک از نمونه‌ها به صورت چشمی بررسی شده. در کور و پرسلم رخ داد و سایر شکست‌ها مخصوصاً در پرسلم بود. در گره شوتدیر زیرچک با دو نمونه، شکست در کور و پرسلم رخ داد. در نمونه گره شوتدیر لیزه‌ها در دنده کریکشده داشت. در کور و پرسلم فقط در یک دنده و نمونه گره شوتدیر فقط در یک دنده گرفته شد.

بحث

یکی از مشکلات پرکه یک‌جانبه تیم سرامیک، امکان شکست آنها در برای نیروهای اکسترالی، و ارتالی است. (23) این مطالعه به شکست چپ ZirCAD در دو نوع ختم روشکاه تیم سرامیکی یافته و ZirCAD روشکاه نیویون. در نشان داد که میانگین مقاومت به شکست در گره چفر ZirCAD نیویون و تولید شد. (22) زیر این نیویون بود. مقایسه نیروی لازم برای شکست هر یک از نمونه‌ها در دنده و میانگین و انحراف معیار نیروی منجر به شکست در هر یک از چهار گره‌زیر در دنده آزمون آزمونی Kolmogorov-Smirnov با نشان داد که داده‌ها از توزیع نرمال تبعیت می‌کند. از آزمون آماری One-way ANOVA یک داده به شکست در گره‌های مختلف استفاده گردید و در هر یک از گره‌ها

اصل منادی معادله نشان داد: \[P = 0.05 \]

محک شکست هر یک از نمونه‌ها به صورت چشمی بررسی شده. در کور و پرسلم رخ داد و سایر شکست‌ها مخصوصاً در پرسلم بود. در گره شوتدیر زیرچک با دو نمونه، شکست در کور و پرسلم رخ داد. در نمونه گره شوتدیر لیزه‌ها در دنده کریکشده داشت. در کور و پرسلم فقط در یک دنده و نمونه گره شوتدیر فقط در یک دنده گرفته شد.

بحث

یکی از مشکلات پرکه یک‌جانبه تیم سرامیک، امکان شکست آنها در برای نیروهای اکسترالی، و ارتالی است. (23) این مطالعه به شکست چپ ZirCAD در دو نوع ختم روشکاه تیم سرامیکی یافته و ZirCAD روشکاه نیویون. در نشان داد که میانگین مقاومت به شکست در گره چفر ZirCAD نیویون و تولید شد. (22) زیر این نیویون بود. مقایسه نیروی لازم برای شکست هر یک از نمونه‌ها در دنده و میانگین و انحراف معیار نیروی منجر به شکست در هر یک از چهار گره‌زیر در دنده آزمون آزمونی Kolmogorov-Smirnov با نشان داد که داده‌ها از توزیع نرمال تبعیت می‌کند. از آزمون آماری One-way ANOVA یک داده به شکست در گره‌های مختلف استفاده گردید و در هر یک از گره‌ها

اصل منادی معادله نشان داد: \[P = 0.05 \]

محک شکست هر یک از نمونه‌ها به صورت چشمی بررسی شده. در کور و پرسلم رخ داد و سایر شکست‌ها مخصوصاً در پرسلم بود. در گره شوتدیر زیرچک با دو نمونه، شکست در کور و پرسلم رخ داد. در نمونه گره شوتدیر لیزه‌ها در دنده کریکشده داشت. در کور و پرسلم فقط در یک دنده و نمونه گره شوتدیر فقط در یک دنده گرفته شد.

بحث

یکی از مشکلات پرکه یک‌جانبه تیم سرامیک، امکان شکست آنها در برای نیروهای اکسترالی، و ارتالی است. (23) این مطالعه به شکست چپ ZirCAD در دو نوع ختم روشکاه تیم سرامیکی یافته و ZirCAD روشکاه نیویون. در نشان داد که میانگین مقاومت به شکست در گره چفر ZirCAD نیویون و تولید شد. (22) زیر این نیویون بود. مقایسه نیروی لازم برای شکست هر یک از نمونه‌ها در دنده و میانگین و انحراف معیار نیروی منجر به شکست در هر یک از چهار گره‌زیر در دنده آزمون آزمونی Kolmogorov-Smirnov با نشان داد که داده‌ها از توزیع نرمال تبعیت می‌کند. از آزمون آماری One-way ANOVA یک داده به شکست در گره‌های مختلف استفاده گردید و در هر یک از گره‌ها
جدول 1: مقادیر نیروی لازم برای شکست هر یک از نمونه‌ها بر حسب نیوتن

<table>
<thead>
<tr>
<th>شووردر (نیوتن)</th>
<th>Press</th>
<th>ZirCAD (نیوتن)</th>
<th>چمر (نیوتن)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1257</td>
<td>1049</td>
<td>1093</td>
<td>1603</td>
</tr>
<tr>
<td>880</td>
<td>1066</td>
<td>1368</td>
<td>1256</td>
</tr>
<tr>
<td>120</td>
<td>111</td>
<td>2010</td>
<td>1654</td>
</tr>
<tr>
<td>1380</td>
<td>988</td>
<td>1551</td>
<td>1651</td>
</tr>
<tr>
<td>1437</td>
<td>1146</td>
<td>1788</td>
<td>1620</td>
</tr>
<tr>
<td>1482</td>
<td>101</td>
<td>1000</td>
<td>1530</td>
</tr>
<tr>
<td>762</td>
<td>176</td>
<td>1040</td>
<td>879</td>
</tr>
<tr>
<td>462</td>
<td>196</td>
<td>1002</td>
<td>1075</td>
</tr>
<tr>
<td>1731</td>
<td>111</td>
<td>1341</td>
<td>1936</td>
</tr>
<tr>
<td>973</td>
<td>56</td>
<td>1059</td>
<td>1296</td>
</tr>
<tr>
<td></td>
<td></td>
<td>879</td>
<td>1075</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1010</td>
<td>1482</td>
</tr>
</tbody>
</table>

نتایج

در مطالعه Jalalian و همکاران، مقدار نیروی لازم برای شکست صفحه‌های شیشه‌ای دیگر که توسط چمر، شووردر و Press در مطالعه Jalalian و همکاران و Peter Rammelsberg انجام شد، مقاومت به شکست در کوره‌های زیرکونیاپی در ختم تراس (چمر) بیشتر از شووردر بود. (7) در مطالعه Jalalian و همکاران نشان داد که ضخامت دیواره رستورن بن B و همکاران، نشان داد که ضخامت دیواره رستورن بن B و همکاران، نشان داد که ضخامت دیواره رستورن بن B روی نیروی فشاری به شکست تأثیر نمی‌گذارد. (5) در مطالعه Jalalian و همکاران مقاومت به شکست روشچای Cho L در مطالعه Jalalian و همکاران مقاومت به شکست D Lorio D و همکاران، مقاومت به شکست Sintered alumina cores CAD/CAM ساخته شده بودند. در مطالعه Jalalian و همکاران مقاومت به شکست Ceromer/FRC D Lorio D و همکاران، مقاومت به شکست Sintered alumina cores CAD/CAM ساخته شده بودند. در مطالعه Jalalian و همکاران مقاومت به شکست D Lorio D و همکاران، مقاومت به شکست Sintered alumina cores CAD/CAM ساخته شده بودند. در مطالعه Jalalian و همکاران مقاومت به شکست D Lorio D و همکاران، مقاومت به شکست Sintered alumina cores CAD/CAM ساخته شده بودند. در مطالعه Jalalian و همکاران مقاومت به شکست D Lorio D و همکاران، مقاومت به شکست Sintered alumina cores CAD/CAM ساخته شده بودند. در مطالعه Jalalian و همکاران مقاومت به شکست D Lorio D و H
REFERENCES

