بررسی توزیع نش در لیگمان پرویز نثال دندانهای قدامی فک بالا

دکتر سید مصطفی ابتجح * - دکتر فرزین هرود **

* استادیار گروه آموزشی ارتودنسی دانشگاه علوم پزشکی همدان
** استادیار گروه آموزشی ارتودنسی دانشکده دندانپزشکی دانشگاه علوم پزشکی مشهد

چکیده

زمینه و هدف: روش انجام محدودیتی از روشهای دقیق جهت درک پاسخگویی دندان به نیروهای ازودشته است. در این مطالعه، به‌وسیله این روش PDL دندانهای قدامی ما گروه (سانتارال، تیتراس، کانین) در هنگام اعمال نیروی اینتروزویو مورد بررسی قرار گرفت.

روش بررسی تصادفی دو بعدی دندانهای مورد نظر (سانتارال، تیتراس، کانین) از فک بالا توسط نرم‌افزار Solid works تبدیل به تصویر سه بعدی گردید. سپس PDL استخوان ان آتروتوس، اطراف دندانهای ایجاد شد. دندانهای قدامی روی قوس Rigid و استخوان ان آتروتوس، اطراف دندانهای ایجاد شد. دندانهای قدامی روی قوس Torque و Tip از نرم‌افزار با اتصال MSC-Nastran تبدیل به مدل اجزای محدودیت مدل شد. سپس روش MSC روی سیم منفصل به دندانهای در مزیال مجموعه دندانهای قدامی اینتروزویو ۳۵ گروه اعمال شد و نرم‌افزار استفاده به فارم قرار گرفت.

بافته‌ها: هنگام اعمال نیرو در مدل‌های اینتروزویو حد اکثر نش در PDL لایه به میزان ۱۰⁻⁶ N/mm² و حد اکثر آن در کانین به میزان ۱۰⁻۶ N/mm² بوده و با توجه‌گیری: هنگام اعمال نیروی اینتروزویو مزیال مجموعه دندانهای قدامی حد اکثر نش در PDL اکثر نش در کانین به میزان ۱۰⁻۶ N/mm² بوده و با توجه‌گیری: هنگام اعمال نیروی اینتروزویو مزیال مجموعه دندانهای قدامی حد اکثر نش در PDL اکثر نش در کانین به میزان ۱۰⁻۶ N/mm² بوده.

واژه‌های کلیدی: ارتودنسی - دندانهای قدامی ما گروه - اینتروزویو - سانتارال - تیتراس - کانین

مقدمه

روشهای مختلفی جهت انتخاب دندانهای قدامی ارائه گردیده است که هر نوع اتصال یک گروه خاص تنش در دندانهای قدامی ایجاد می‌کند. مطالعه حاضر قصد دارد گروه توزیع تنش در دندانهای قدامی انتخاب اینتروزویو آق در ناحیه می‌کند.

تحلیل تنش در دندانپزشکی به روشهای مختلف قابل اجرای اینجاست. از جمله استفاده از: Riggard، Begg، Bypass، Edgewise، Burstone، Begg، Bypass، Edgewise، Burstone و بی‌بی‌اف (Beggs)، در تحقیق این بیان می‌شود که این روشهای مختلف از نظر توزیع تنش در دندانهای قدامی به صورت متفاوت عمل می‌کنند. در این تحقیق، روشهای اینتروزویو با متون اینترنتی واقعی استفاده در این تحقیق.
روش بررسی

این مطالعه توصیفی به کمک تکنیک اجزای محدود Nastran و Patran سه بُعدی و نرم افزار ANSYS انجام شده است. جهت اجرای این مطالعه سه دانان قداشی ماقبلی (ساتریال، نترال و کابین) به صورت سه بعدی مدل سازی گردید. مراحل سه بعدی سازی عبارت بودند از ایجاد تصاویر دو بعدی دندانها از نواحی مختلف، تبدیل تصاویر دو بعدی دندانها به نقشه‌های دو بعدی کامپیوتری، تهیه نقشه‌های سه بعدی دندانها با استفاده از نقشه‌های دو بعدی و سلسله نرم افزار PDL استخوان اطراف دندانها به وسیله نرم افزار Tip در مرحله بعد دندان را بر این تکنیک استفاده کرده‌است. نسخه جدید Nastran به مدل اجزای محدود سه بعدی تبدیل شده است. استخوان آنلود به دندهای اجزاء مقدار نرم بينهای توسط پدال به سطح پدال مدل‌گردن نرم افزار Tip. سه کل مدل توسط نرم افزار Tip به دندهای اجزاء مدل‌گردن نرم افزار Tip نسبت به مدل اجزاء محدود سه بعدی غیر قابل پیش‌بینی است. کف استخوان آنلود به عنوان تکیه‌گاه مدل در نظر گرفته شد. (شکل 1)

۱. روش اجزای محدود (FEM)
۲. نرم افزار ANSYS
۳. روش اجزای محدود (FEM)

روش اجزای محدود (FEM) یک روش دقیق تحلیل تنش با استفاده از کامپیوتر است. از تکنیک اجزای محدود در دانشگاه‌های در موضوعات مختلف از جمله تنش در ساختمان دندان، بیومتریال و ترمیم، ایمپلنت و معالجه عصب استفاده شده است. (۶)

برای زمینه‌های ارتودنسی در سال ۱۹۹۴، برای اولین بار این نسخه استفاده از تکنیک اجزای محدود سه بعدی دندان کانین را مدل سازی سه بعدی دندان را بر این تکنیک استفاده کرده‌اند. پدال به دندهای اجزاء مقدار نرم بينهای توسط پدال به سطح پدال مدل‌گردن نرم افزار Tip. سه کل مدل توسط نرم افزار Tip به دندهای اجزاء مدل‌گردن نرم افزار Tip نسبت به مدل اجزاء محدود سه بعدی غیر قابل پیش‌بینی است. کف استخوان آنلود به عنوان تکیه‌گاه مدل در نظر گرفته شد. (شکل 1)

۱. روش اجزای محدود (FEM)
۲. نرم افزار ANSYS
۳. روش اجزای محدود (FEM)

روش اجزای محدود (FEM) یک روش دقیق تحلیل تنش با استفاده از کامپیوتر است. از تکنیک اجزای محدود در دانشگاه‌های در موضوعات مختلف از جمله تنش در ساختمان دندان، بیومتریال و ترمیم، ایمپلنت و معالجه عصب استفاده شده است. (۶)

برای زمینه‌های ارتودنسی در سال ۱۹۹۴، برای اولین بار این نسخه استفاده از تکنیک اجزای محدود سه بعدی دندان کانین را مدل سازی سه بعدی دندان را بر این تکنیک استفاده کرده‌اند. پدال به دندهای اجزاء مقدار نرم بينهای توسط پدال به سطح پدال مدل‌گردن نرم افزار Tip. سه کل مدل توسط نرم افزار Tip به دندهای اجزاء مدل‌گردن نرم افزار Tip نسبت به مدل اجزاء محدود سه بعدی غیر قابل پیش‌بینی است. کف استخوان آنلود به عنوان تکیه‌گاه مدل در نظر گرفته شد. (شکل 1)
پرسی توزیع تنش در پیوسته‌های میکروپالستیک دندان‌های قدامی...

سپس در مزیال دندان سانترال نیروی ۳۵گرمی برای PDL و استخوان آلولون که جهت تحلیل تنش لازم بود کامپیوتر داده شد (10-11). نرم افزار patran مورد بررسی قرار گرفت.

جدول 1: خواص فیزیکی مواد به کار رفته در مدل اجزای محدود

<table>
<thead>
<tr>
<th>نوع ماده</th>
<th>Poisson’s ratio</th>
<th>Young’s modulus (Mpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>دندان</td>
<td>0.3</td>
<td>1/32×10⁹</td>
</tr>
<tr>
<td>PDL</td>
<td>0.49</td>
<td>6.66×10⁻¹</td>
</tr>
<tr>
<td>استخوان آلولون</td>
<td>0.3</td>
<td>1/32×10⁶</td>
</tr>
</tbody>
</table>

پایه‌ها

 وقتی که نیروی یا نیروگذاری ۳۵گرمی در ناحیه مزیال مجموعه دندان‌های سانترال، لنزال و کاتین وارد می‌آید، حداکثر تنش در PDL لنزال و حداکثر تنش در کاتین PDL نیروی در مورد هنگام اعمال نیرو در میکروپالستیک حداکثر فشار در آیکس و در مورد دندهای PDL کانین، ناحیه مارزیتال ریشه سمت مزیوبکال حداکثر فشار و ۷/۳ آیکال و دیستال ریشه حداکثر فشار دیده می‌شود. خلاصه تحلیل تنش درون دندان‌های PDL هنگام اینتروژن در جدول ۲ آمده است.

جدول ۲: نتایج تحلیل تنش در PDL دندان‌های قدامی برای اعمال نیروی اینتروژن در میدلاین

| ناحیه مورد بررسی | میزان تنش | حداکثر حداکثر حداکثر حداکثر حداکثر ا‌کس ا‌کس ا‌کس ا‌کس
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PDL</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
</tr>
<tr>
<td>دندان نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
</tr>
<tr>
<td>PDL</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
</tr>
<tr>
<td>دندان نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
</tr>
<tr>
<td>PDL</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
</tr>
<tr>
<td>دندان نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
</tr>
<tr>
<td>PDL</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
</tr>
<tr>
<td>دندان نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
</tr>
<tr>
<td>PDL</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
<td>نیروی</td>
</tr>
</tbody>
</table>

بحث

اینتروژن کننده مزیال دندان سانترال اعمال می‌شود، در کل مدل حداکثر تنش در آیکس لنزال و حداکثر تنش در ۱/۳ آیکال سمت باکال و دیستال ریشه کاتین می‌باشد. در پی اینتروژن وقتی نیروی PDL از لحاظ بررسی تشن طی اینتروژن وقتی نیروی PDL مجله دندانپزشکی جامعه اسلامی دندانپزشکان / دوره ۱۶، شماره ۴، زمستان ۱۳۸۳
شکل ۲: تحلیل تن‌ش در دندانهای قدامی برای اعمال نیروی اینترزویو در میدلان‌ین، نمای باکال.

شکل ۳: تصویر تحلیل تن‌ش در دندان سانترال برای اعمال نیروی اینترزویو در میدلان‌ین، نمای باکال و پالانال.
شکل ۴: تحلیل تنش در PDL دندان کانین برای اعمال نیروی اینتروزیو در میدتاپان، نمای باکال و پالاتال.

شکل ۵: تحلیل تنش در PDL دندان کانین برای اعمال نیروی اینتروزیو در میدتاپان، نمای باکال و پالاتال.
ناتج سنتزانی کانتورهای تنش هر چه به سمت آیکس نزدیک شد، کمتر می‌شود و هر چه به سمت تاج نزدیک‌تر شده، بیشتر می‌شود، به نحوی که حاصل‌شان در آیکس و حداکثر فشار در مارژین ریشه سمت باکالی می‌باشد.

حرکت پیش بینی شده طبق این نوع الگوی تنش به سمت حرکت لبیالی تاج Flar و هم‌زمان به سمت حرکت در مارژین فشار تنش به سمت حرکت لبیالی تاج Flaring می‌باشد. در سنتزانی آیکس نیرو نسبت به مکان مکانی به سمت حرکت لبیالی تاج Flaring می‌باشد. در سنتزانی آیکس نیرو نسبت به مکان مکانی به سمت حرکت در مارژین فشار تنش به سمت حرکت لبیالی تاج Flaring می‌باشد.

در ناحیه سنتزانی یک الگوی توزیع تنش تقریباً یکنواخت دو سمت لبیال و بی‌الاتری دیده می‌شود، البته حداکثر تنش در آیکس می‌باشد. طبق این مدل توزیع تنش حرکت پیش بینی شده، اینترنتوزن خالص خواهد بود. در ناحیه کانترهای الگوی توزیع تنش مکانی در آیکس و سمت حرکت لبیالی تاج Flaring می‌باشد و هم‌زمان در سنتزانی آیکس نیرو نسبت به مکان مکانی به سمت حرکت در مارژین فشار تنش به سمت حرکت لبیالی تاج Flaring می‌باشد. در سنتزانی آیکس نیرو نسبت به مکان مکانی به سمت حرکت در مارژین فشار تنش به سمت حرکت لبیالی تاج Flaring می‌باشد. در سنتزانی آیکس نیرو نسبت به مکان مکانی به سمت حرکت در مارژین فشار تنش به سمت حرکت لبیالی تاج Flaring می‌باشد.
REFERENCES