آنالیز تنش برجی سه واحده تمم سرامیک جهت بررسی تأثیر زوايا تقارب دندانهای پایه به کمک روش اجزای محدود

مهدو محمد جعفری‌پوریا - دکتر فرامرز فرهنگ
- کارشناس ارشد مهندسی پیوستنیک دانشکده مکانیک دانشگاه صنعتی شریف.
- دانشیار گروه آموزشی مکانیک دانشگاه صنعتی شریف.
- استادیار گروه آموزشی ارتباطی دانشکده دندانپزشکی دانشگاه شهید.

چکیده
زمینه و هدف: شکست مکانیکی یکی از عوامل مهم عدم موقفیت برجی‌های دندانی بخصوص در انواع تمم سرامیک آنها به شمار می‌رود. هدف از انجام این مطالعه، ارزیابی تأثیر زاویه تقارب اکثریت دندان‌های پایه بر توزیع و حد اکثر مقادیر تنش‌های فیزیکی مکانیکی در پروتز و سطح تماس آن با دندان‌های پایه در یک برج سه واحده تمم سرامیک بوده است که به کمک روش عددي اجزای محدود انجام پذیرفت.

روش بررسی: ابتدا نقاط مربوط به اطلاعات سه بعدی دندان‌های پروتز دوم قلمون دوم با استفاده از سیستم اسکن CATIA آوتوس 3D درآمده و برای مدل‌سازی سطحی برجی سه و احده و دندان‌های پایه در نرم‌افزار I-DEAS گرفته. اطلاعات بدست آمده به منظور مش بندی و تحلیل مدفوعات اجزای محدود سه بعدی به نرم‌افزار FEM منقل گردید و ناحیه تقارب تعیین شده با سیستم فنی به نمایش در مدل‌های اول و دوم به ترتیب از صد و هفتصد و پنجصد و صد و شصت و هفت‌صد و هفدهصد مان حجمی چهار نورد تا هر دئال استفاده گردید. از اعمال سه‌بعدی بازگرداری و استفاده از دو مدل پروتز متفاوت بررسی و نتایج با یکدیگر مقایسه شد.

بافت‌ها: نتایج حصول نشان داد که تنش‌های فیزیکی کششی مکانیکی روی سطح چندین آل کانکستر بر روی موصل دوم ایجاد گردید. همچنین حد اکثر این تنش‌ها در سطح تماس پروتز و دندان‌های پایه بر روی سطح مارچنجل و در نواحی دریغِن دندان‌های پایه موصل دوم متفاوت افتاد. مقادیر حد اکثر تنش‌های فیزیکی کششی در مدل‌های اول از اکثر تقارب در مقایسه با مدل دوازده‌اندل اکثر تقارب اندکی کمتر بدست آمد که این اختلاف چشمگیر بود. با نگرفت مدل‌های پروتز از مقدار حد اکثر تنش‌های کاهش یافت.

نتیجه‌گیری: استفاده از برج سه واحده تمم سرامیک به دلیل استحکام بالاتر مکانیکی آن از ضربه اطمینان بیشتری بخورود از می‌باشد. همچنین نتایج نشان داد شرایط بارگذاری از نقطه‌های مهمی در مقادیر و شدت تنش‌های مکانیکی بخورود از می‌باشد.

واژه‌های کلیدی: پروتز - برج سه واحده - روش اجزای محدود - زاویه تقارب دندان‌های پایه

1. Cloud points.
2. Atos.
مدتی‌های مدیدی است که برج‌های مثال - سرامیک برای چاپ‌گری دندان‌های از دست رفته مورد استفاده قرار گرفته‌اند. با وجود اینکه این نوع از برج‌ها از استحکام بسیار بالایی برخوردارند، فردانی‌ها ساخت آنها دشوار بوده و به دلیل استفاده از مغزی فلزی تشکیل نشان‌های حرارتی پسماند در پروتزنی ایجاد می‌گردد. از سوی دیگر، برج‌های تمام سرامیک از مشخصات زیبایی منحصر به فردی برخوردار بوده، دارای فرآیند ساخت آسان‌تر و تهیه از برج‌های تمام سرامیک می‌باشد. از این رو این گونه پروتزها مورد توجه هر چیز مختصاتی این رشته و همچنین بیماران قرار گرفته است. البته نقطه نظر این گونه برج‌ها در مقایسه با انواع مثال - سرامیک، ظرفیت تحلل بار نسبتاً کم به دلیل استحکام نهایی محدود و همچنین چرکمگی شکست آن‌ها می‌باشد. (2) با وجود اینکه امروزه انواع سرامیک‌های دندانی جدید به بازار عرضه شده است که از ظرفیت تحلل بار مناسب و مشخصات زیبایی و وزهایی برخوردارند، استفاده از برج‌های تمام سرامیک برای چاپ‌گری دندان‌های مانده از دست رفته با مقدار بزرگتر نیز مبهم وارد بر این دندان‌ها می‌شود. همچنین به عنوان مشکل در پیش روی متخصصان رشته پروتزنی دندان قرار دارد.

اطلاعات کلی‌نیکی نشان داده است که شکست برج‌های تمام سرامیک اغلب در ناحیه کانکتورها و به دلیل دارا بودن کمترین سطح مقطع در پروتزنی رخ می‌دهد. به همین دلیل به‌منظور تعیین مقدار بهینه ابعاد کانکتورها، تحقیقات مختلفی انجام شده است. (3) هر چند، این امر با توجه به نتایج موجود که در این‌جا ارائه شده است، در این مورد استحکام شکست برج‌های تمام سرامیک را تحت تأثیر قرار دهنده و از جمله مهم‌ترین آنها می‌توان از زوايا 1. Residual thermal stresses.
2. Fracture toughness.
3. Retention.

مجله دندانپزشکی جامعه اسلامی دندانپزشکان / دوره 16، شماره 2، زمستان 1383
منطقه شد و جهت ساخت برج سه واحدی بر اساس استانداردهای اس‌آ‌سی و ای‌دی‌اس‌اس انجام شد. در این آماده‌سازی ارتقاء و عرض کانکتورها به ترتیب چهار و پنج میلی‌متر در نظر گرفته شدند (2) و از طرح مارچین جمفر

شکل 1: نمایشی از مشبک و اعمال شرایط مرزی و پاره‌گزاری مدل اجزای محدود برج سه واحدی

جداول

<table>
<thead>
<tr>
<th>نام مدل</th>
<th>دندان‌پایه پرمول دوم (درجه)</th>
<th>دندان‌پایه پرمول دوم (درجه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>طولانی - لیتکوال</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>مزیال - دیستال</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>FEM1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEM2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در مدل‌های اجزای محدود تهیه شده در این مطالعه پروت و سرامیک Dicor به‌عنوان ماده یا جایگزین ماده اصلی و جهت مقایسه با آن در نظر گرفته شد. مواد پروت و دندان هم‌خون دستیابی به ایزو‌پری‌کیک در مورد استفاده و مقادیر خاص این مواد مطلق جدول 1 مورد استفاده قرار گرفت (8). در مدل‌های اجزای محدود فوق همچنین فرض شد که بین ماده پروت و دندان اتصال کامل برقرار است (9) و تغییر مکان کف‌گره در تمام جهات و در زیر خط طویل دندان‌های پایه ثابت فرض شدند (شکل 1) 5

مجله دندانپزشکی جامعه اسلامی دندانپزشکان / دوره 16، شماره 4، زمستان 1383
جدول ۲: خواص مکانیکی مواد مورد مطالعه

<table>
<thead>
<tr>
<th>ضریب پوواسون</th>
<th>مدل الاستیسیته (GPa)</th>
<th>ماده</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۲۵</td>
<td>۷۰/۰</td>
<td>IPS-Empress2</td>
</tr>
<tr>
<td>۰/۲۲</td>
<td>۶۹/۰</td>
<td>Dior</td>
</tr>
<tr>
<td>۰/۱۳</td>
<td>۱۸/۰</td>
<td></td>
</tr>
</tbody>
</table>

در صفحه ساجیتال و بر مرکز سطح آکلوزال پوتنیک وارد گردید. پس از انجام تحلیل‌های مربوطه، کانتورهای تنش‌های اصلی در پروتز و کپلکس رستوریشن/دندان‌های پایه و همجنس کانتورهای تنش‌های پرشی در سطح نواحی و در صفحه مساحی‌های استخراج گردید و جهت بررسی و مقایسه مورد استفاده قرار گرفت.

از نظر شرایط بارگذاری، سه وضعیت اعمال بر مطالعه ذیر در نظر گرفته شد:

۱. بارگذاری ۱۰ مگا‌پاسکال که در راستای عمودی بر روی سطح آکلوزال پوتنی توزیع گردید.

۲. بار متمرکز شش‌تضمینی که به طور عمودی بر مرکز سطح آکلوزال پوتنی، به عنوان عمومی‌ترین وضعیت بارگذاری (عمل شد. شکل ۱)

۳. بار متمرکز شش‌تضمینی که تحت زاویه ۴۵ درجه

شکل ۲: الگوی توزیع نیرو و حداکثر مقادیر تنش‌های کششی در پروتز تحت اعمال شرط بارگذاری یک (A-FEM1, B-FEM2)

شکل ۳: الگوی توزیع نیرو و حداکثر مقادیر تنش‌های کششی در سطح نواحی اصلی کششی در پروتز تحت اعمال شرط بارگذاری یک (A-FEM1, B-FEM2)
یافته‌ها

توجه توزیع نش اصلی، صرف نظر از شرایط بارگذاری و مواد پروتز در هر دو مدل FEM1 و FEM2 مشابه یکدیگر بوده و در هر دو مدل FEM1 و FEM2 مشابه یکدیگر بوده.

جدول 3: جدول نتایج اصلی در کانتر سنت پرمول دوم و سطح نهایی پرتره و دندان تحت اعمال شرایط بارگذاری دو و سه در مدل‌های FEM1 و FEM2

<table>
<thead>
<tr>
<th>مقادیر حداکثر تشنه‌های کششی در پروتز (MPa)</th>
<th>مقادیر حداکثر تشنه‌های کششی در سطح نهایی (MPa)</th>
<th>FEM1</th>
<th>FEM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیروی مورد سه</td>
<td>نیروی مورد دو</td>
<td>نیروی مورد سه</td>
<td>نیروی مورد دو</td>
</tr>
<tr>
<td>81/9</td>
<td>99/8</td>
<td>32/0</td>
<td>89/3</td>
</tr>
<tr>
<td>81/9</td>
<td>85/0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

کانتورهای تشنه‌ای اصلی در پروتز و سطح نهایی برای مواد پروتز Dicor و IPS-Empress2 تحت اعمال شرایط بارگذاری سه طبقه سه طبقه شکل 3 می‌باشند. در برچسب جدول نهایی تشنه با Dicor و IPS-Empress2 مشابه دیگر. مقادیر حداکثر تشنه‌های اصلی در کانتورهای بارگذاری 75/3 مگاپاسکال در Dicor به ترتیب دو در FEM1 و FEM2.

مقاله دندانپزشکی جامعه اسلامی دندانپزشکان / دوره 16، شماره 4، زمستان 1383
تشخیص بررسی در شرایط عمومی بازگشتی

شرايط بازگشتی نقش مهمي در نتایج حاصل از اين مدل ایفاکرد و اطلاعات دقيق تر این زمینه می تواند به تخمینهای مناسبتری منجر گردد.

در این مطالعه مساحت دب که چگونه استحکام

شکست یک برج سه واحد تحت تاثیر زوایای تقارن

دندهای پایه قرار گرفته است. تست شکست تنش 

شکست در برج با الگوی توریز تنش در یک تیر

ساده که معرف مدل بیومکانیکی برج یک برج است

مطالعات دارد. این نتیجه می تواند به عنوان تأییدی کننده

بایستد. به این ترتیب حداکثر مقادیر تنش اصلی در برج

بزرگ‌مدل‌های FEM1 و FEM2 به ترتیب 81 مگاپاسکال و 88 مگاپاسکال بدست آمد که به مقدار

مطالعات با آن در تحقیقات که در سال 2010 توسط

و همکاران تحت شرایط مشابه ارائه شده و معادل

مگاپاسکال بودند. این نتایج به این است که FEM1

کششت در مدل‌های FEM1 و FEM2 ممکن است به این

نتیجه رهنمود گردد که زوایای تقارن دندان‌های پایه

نمی‌تواند به این برج سه واحد تام سرآمدی مقدار

در این مطالعه شکست در برج با الگوی توریز تنش

ساده که معرف مدل بیومکانیکی برج یک برج است

مطالعات دارد. این نتیجه می تواند به عنوان تأییدی کننده

بایستد. به این ترتیب حداکثر مقادیر تنش اصلی در برج

بزرگ‌مدل‌های FEM1 و FEM2 به ترتیب 81 مگاپاسکال و 88 مگاپاسکال بدست آمد که به مقدار

MGS/MOR

<table>
<thead>
<tr>
<th>MGS/MOR</th>
<th>مدل</th>
<th>FEM</th>
<th>مدل</th>
<th>FEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>81/2394</td>
<td>IE2</td>
<td>FEM1</td>
<td>86/2392</td>
<td>IE2</td>
</tr>
<tr>
<td>75/1256</td>
<td>Dicor</td>
<td>FEM1</td>
<td>99/81256</td>
<td>Dicor</td>
</tr>
</tbody>
</table>

1. Maximal Generated Stress.
انالیزهای انجام شده، مقادیر حداکثر تنشهای بدست آمده (MGS) از بادیهای مندرج در جدول ۴ در چهار نوع طرح‌کاری مختلف و بررسی شده‌اند. نتایج نشان می‌دهند که متوسط برای اینجایی در حالت سه و یکی از سه شرایط بیماری برای چاپ‌گری دندان مولر اول مندل با دقت شرایط بیمار را با دقت مورد توجه قرار دهد.

پرداختنی‌ها

ساخته شده از ماده سرامیکی IPS-Empress2 کوچکتر از ۱۵٪ می‌باشد. بنابراین این گونه بادی‌ها تحت شرایط بارگذاری نوسانی در شرایط کلینیکی می‌توانند به نحو موفقیت آمیز برای جایگزینی دندان مولر اول مندل مورد استفاده قرار گیرند. اگرچه، در مورد بیمارانی که دارای حرکات فکی پاوژالمال بوده و نیروهای وارد بر دندان‌های این افراد تا ده برابر افزایش می‌یابد، با توجه به خطی بودن

شکل 4: الگوی توزیع و مقادیر حداکثر تنشهای اصلی کششی در پروتز و در سطح تمام پروتز و دندان‌های پایه

تحت اعمال شرط بارگذاری مورد دو.

(A1-FEM 1, IPS-Empress2, A2 FEM 1, Dicor, B1-FEM 2, IPS-Empress2, B2-FEM 2, Dicor
A3-FEM 1, IPS-Empress2, A4-FEM 1, Dicor, B3-FEM 2, IPS-Empress2, B4-FEM 2, Dicor)

مجله دندانپزشکی جامعه اسلامی دندانپزشکان / دوره ۱۶، شماره ۴، زمستان ۱۳۸۲
نتایج گیری

نتایج بدست آمده از این مطالعه را می‌توان مطابق زیر بررسید.

1. مدل‌های دقیق کامپیوتری دندان‌های مندلی بر پوژت دوم، مولر و مولر دوم و همچنین ابزار یک مدل پارامتری از بریج سه و یک ساختمان شد.

2. ناحیه تعویق تشنج در بر پوژت و سطوح تمام دندان‌های پایه تحت شرایط مختلف بازگذاری و استفاده از دو ماده بر پوژت تعیین گردید.

3. اثر تشنج‌های بریش در سطح تمام ماده بر پوژت و دندان و در صفحه ماسی به دلیل مقادیر کم آن‌ها قابل صرف‌نظر می‌باشد.

4. زوایای تقارن دندان‌های پایه می‌توانند تأثیرات شگرف‌بر استحکام شکست بریج سه و یک ساختمان تمام سرامیک نباشد.

5. مقادیر و ناحیه اعمال بار، عوامل تأثیر گذاری بر

تشکر و سپاس

1. بدين وسيله از جهت درک شجاعتالدين شایق كه از مشاور راهنمایي ايشان در زمينه علم پوژت در دوين اين مقاله بهره جسته تقدير و تشکر مينايم.

2. همچنین از مهندس فريد وكيلي مدیرعامل محترم شركت فلك صنعتگستر به سبب همکاری مؤثران تشکر مينايم.

REFERENCES


