آنالیز نش برق سه واحده تام سرامیک جهت بررسی تأثیر زوایای تقارب دندانهای پایه به کمک روش اجزای محدود

مهندس محمد جعفر بیرا
دکتر فریبرز فرخزاد
دکتر فریبرز فرخزاد
رضا خاتمی
کارشناس ارشد مهندسی پژوهشکده کارشناسی دانشگاه صنعتی شریف
دانشگر گرد در اموزش مکانیک دانشگاه صنعتی شریف
استاد ارشد دانشگاهی از جمله دانشگاه‌های دانشگاه مشهد و دانشگاه فردوسی مشهد

چکیده
زمینه و هدف: شکست مکانیکی یکی از عوامل مهم عدم موافقت برق‌های دندانی به‌خصوص در انواع تام سرامیک آنها به شمار می‌رود. هدف از انجام این مطالعه، تأثیر تغییر زوایای تقارب، فرسودگی و انحراف از آن در دندانهای پایه بر توزیع اثرات دامنه و تنش‌های مکانیکی در پرتو در سطح تام تیکی استفاده در یک برق سه واحده تام سرامیک بوده است که به کمک روش اجزای محدود انجام پذیرفت.

روش بررسی: این نقطه رابطه به اطلاعات سه بعدی دندانهای پرمولوم دوم مانعول دوم با استفاده از سیستم استکر آتوس، فرایند گردید و برای مدل‌سازی سطح برق سه واحده و دندانهای پایه در نرم‌افزار CATIA، مدل‌سازی سطح‌بندی و تحلیل مکانیکی اجزای محدود به‌کار رفته در فناوری گرفتن اطلاعات بدست آمده یا منظور مشبک و بندی، از انتخاب سه بعدی و توزیع نشان داده شد. با سه بعدی اول و دوم به ترتیب FEM فردوسی مشهد توانست گردید و به‌طور گسترده‌ای تغییر شد. فرمول داتو و پایین نشان داده شد. نتایج اصلی انجام الگوهای مشابه تأمین شد و چنین انتخابات می‌تواند تحت تاثیر تغییرات محدود در اجزای پایه جهت پیشبرد اخلاق بفیت به‌کار گرفته شود.

یافته‌ها: نتایج حصول نشان داد که تنش‌های سطحی کششی ماکسیمی در مسیر سطحی می‌تواند با بهره‌برداری از دندهای پرتو افزایش گردد. همچنین حداقل این نشان‌ها در سطح ماده پرتو و دندانهای پایه بر روی سطح مارچال و در نواحی در مدل داده‌ای زاویه تقارب افزایشی مقداری را دارند. اگر تنش‌های سطحی کششی در مدل بخشهای اکثر تاریکی در مقایسه با مدل دارای حداقل زاویه تقارب کمتر این شکست در ماده‌ها در این مدل را هدایت می‌کند. اگر نتایج در مقایسه دو مدل اکثر تاریکی از دیگر به‌کار گرفته شود.

نتیجه‌گیری: استفاده از برق سه واحده و این روش با استفاده از نرم‌افزار IPS-Empress2 به دلیل استحکام بالای مکانیکی آن از ضربان اطمینان برخوردار از می‌باشد. همچنین نتایج نشان داد شرایط بارگذاری از نقص مهمی در مقایسه به دست نشان داد که این احتمال از دیگر به‌کار گرفته شود.

یادداشت کلیدی: بروزتربیت، برق سه واحده و این روش اجزای محدود و زوایای تقارب دندانهای پایه

1. Cloud points.
2. Atos.
روش بررسی

در این مطالعه از این بروز سه واحدی که برای جایگزین‌دندهای مول اول مناسب ساخته شده بود، یک مدل دقیق کامپیوتری تهیه گردید. برای این منظور از مدل‌های پلاستیکی دندان‌های پرمول دوم، مول اول و مول دوم که از نظر هندسه و ابعاد بر اساس دستورالعمل ارائه شده در کتاب آناتومی و مورفولوژی ویرال(2) با دقت مناسب و برای مصارف آموزشی ساخته شده بود، استفاده شد. مدل دندان‌ها مطابق موقعیت آنها در قوس دندانی درون یک گره قرار گرفته و سپس دندان‌ها توسط اسنک آتوم (ساخت شرکت GOM) با دقت 0.1 سی‌متر دیجیتالی شدند و ابر نقاط تاج دندان‌ها در موقعیت قوس دندان به دست آمد. پس از خارج کردن دندان‌ها از توده گچ بخش‌های بالای مانند جمله ریشه دندان‌ها دچار شد و ابر نقاط به دست آمده به ابر نقاط تاج دندان‌ها با دقت 3/16 در کاهش اندازه این اجسام و سپس به حرکت CATIA جهت سطح‌گذاری به نرم‌افزار 5/10 CATIA
به شعاع ۱۰ میلی‌متر استفاده شد. پس از تهیه مدل‌های
سطح از برج و دندان‌های پایه اطلاعات بدست آمده به
نرم‌افزار I-DEAS روایت ام اس هشت برد شد و برای
ساخت مدل‌های حجمی و مدل‌های اجزای محدود مورد

منقل شد و جهت ساخت برج سه واحدی بر اساس
دستورالعمل‌های آماده‌سازی دندان‌های پایه (۵) عمل شد. در
این آماده‌سازی ارتفاع و عرض کانکتورها به ترتیب جهار و
۵ میلی‌متر در نظر گرفته شدند (۶) و از طرح مارجین جغرافیا

شکل ۱: نمایشی از مشبینی و اعمال شرایط مرزی و بازگذاری مدل اجزای محدود برج سه واحدی

استفاده قرار گرفت (شکل ۱). جهت مش بندی مدل‌ها از
المان‌های تترا هدرال جهار نودی با سه درجه آزادی
استفاده شد. مدل اجزای محدود با زاویای تقارن حد
بالا (FEM ۱) و زاویای تقارن حد پایین (FEM ۲)

جدول ۱: زاویای تقارن دندان‌های پایه در مدل‌های مورد مطالعه

<table>
<thead>
<tr>
<th>نام مدل</th>
<th>دندان‌پایه برمول دوم (درجه)</th>
<th>باکال - لیتکوال</th>
<th>مریال - دیستال</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEM1</td>
<td>۱۶ ۱۲ ۲۴ ۲۰</td>
<td>۸ ۶ ۴ ۲</td>
<td></td>
</tr>
<tr>
<td>FEM2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

بروتو و سرامیک Dicor به‌عنوان ماده جایگزین ماده
بروتو و جهت مقایسه آن در نظر گرفته شد. مواد بروتو و
دندان همواره، استاتیک خطي و آیزوتروپیک فرض شدند
و مقدار خواص این مواد مطلق جدول ۲ مورد استفاده
قرار گرفت. (۸) در مدل‌های اجزای محدود فوق همچنین
فرض شد که بین ماده بروتو و دندان اتصال کامل برقرار
است (۹) و تغییر موقعیت‌ها در تمام جهات و در زیر
خط طویل دندان‌های پایه ثابت فرض شدند. (شکل ۱)

در مدل‌های اجزای محدود تهیه شده در این مطالعه
فرض شد که مینای دندان به‌طور کامل برداشته شده و
توسط ماده سرامیک جایگزین گردیده است. همچنین از
اثر پال بی‌گمان‌های پروتئین و لایه سمن در تمام
تام پروتو و دندان صرف نظر شد. فرضیات فوق
فرضیات منطقی است که در مطالعات قبیل نیز مورد
استفاده قرار گرفته است (۱ و ۷)

ماده سرامیکی ۲ به‌عنوان ماده اصلی

مجله دندانپزشکی جامعه اسلامی دندانپزشکان / دوره ۱۶، شماره ۴، زمستان ۱۳۸۲
جدول ۲: خواص مکانیکی مواد مورد مطالعه

<table>
<thead>
<tr>
<th>مواد</th>
<th>ضریب پوواسون (GPa)</th>
<th>مدول الاستیسیته (GPa)</th>
<th>عاج دنندر</th>
<th>18.0</th>
<th>69.0</th>
<th>IPS-Empress2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.13</td>
<td>90.0</td>
<td></td>
<td></td>
<td>118.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.22</td>
<td>69.0</td>
<td></td>
<td></td>
<td>118.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>70.0</td>
<td></td>
<td></td>
<td>118.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در صفحه سالیتال و بر مرکز سطح آکلوزال یوتینیک وارد گردید. یک از انواع تحلیل‌های مربوط به تنش‌های اتصال در پروتز و کمپلکس رستورانیا و دندان‌پزشکی پایه و همچنین تنش‌های اتصالی سطح در سطح تماس و در صفحه ممسنی استخراج گردید و جهت بررسی و مقایسه مورد استفاده قرار گرفت.

از نظر شرایط بارگذاری، ویژه وضعیت اعمال بر مطلق ذیر در نظر گرفته شد:

۱. پاتگن‌های دو مگاپاسکال که در راستای عمودی بر روی سطح آکلوزال یوتینی توزیع گردید.

۲. پات متمرکز ششصد نمونه که به طور عمودی و بر مرکز سطح آکلوزال یوتینی به عنوان عمومیت و وضعیت بارگذاری، اعمال شد (شکل ۱)

۳. پات متمرکز ششصد نمونه که تحت زاویه ۴۵ درجه

![شکل ۲: اگری توزیع تنش و حداکثر مقادیر تنش‌های اتصالی در سطح تماس شکست در بروز و دندان‌پزشکی پایه تحت اعمال شرط بارگذاری یک (A-FEM1، B-FEM2)](A-FEM1، B-FEM2)

شکل ۲: اگری توزیع تنش و حداکثر مقادیر تنش‌های اتصالی در سطح تماس شکست در بروز و دندان‌پزشکی پایه تحت اعمال شرط بارگذاری یک (A-FEM1، B-FEM2)

*مجله دندانپزشکی جامعه اسلامی دندانپزشکان / دوره ۱۶، شماره ۴، زمستان ۱۳۸۲*
یافته‌ها

نحوه توزیع نتایج اصلی، صرف نظر از شرایط بارگذاری و مواد برون‌ز در هر دو مدل FEM1 و FEM2 مشابه یکدیگر بوده است. این ترتیب که در نواحی نزدیک به سطح چین‌چوب پوستی و از تارهای عمدتاً تشنه‌ها کشیده و در نواحی نزدیک به سطح اکلوزال و بازی تار خنثی تشنه‌های فشاری ایجاد گردید. حاکم تنش‌های اصلی در سطح چین‌چوب کانتور سرم ریتین دندان پایه پرمول دوم و حاکم تنش‌های اصلی در سطح تماس مادة پرمول و دندان پایه روی سطح مارچینال و در سطح رینو دندان باید موثر دوم دخ. اگرچه تحت اعمال شرایط بارگذاری و مواد مختلف مورد استفاده برای مادة پرمول در این مطالعه، اختلافات قابل توجهی در کانتورهای مشاهده گردیده (شکل 3 و 4). برای بارگذاری مورد 1، ناحیه پرتش کشی از سمت باکال به سمت لینگوال اصلی در موارد فوق در جدول 3 آن‌ها شده است.

جدول 3: حاکم تشنه‌های اصلی در کانتور سرم پرمول دوم و سطح تماس پرمول و دندان تحت اعمال شرایط بارگذاری دو و سه مدل‌های FEM2 و FEM1

<table>
<thead>
<tr>
<th>مقدار حاکم تشنه‌های کشی (MPa) در پرتو ز</th>
<th>مقدار حاکم تشنه‌های کشی (MPa) در سطح تماس</th>
<th>FEM1</th>
<th>FEM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیروی مورد س (MPa)</td>
<td>نیروی مورد س (MPa)</td>
<td>نیروی مورد س (MPa)</td>
<td>نیروی مورد س (MPa)</td>
</tr>
<tr>
<td>81/9</td>
<td>99/8</td>
<td>41/0</td>
<td>99/6</td>
</tr>
<tr>
<td>86/2</td>
<td>119/0</td>
<td>29/3</td>
<td>93/0</td>
</tr>
</tbody>
</table>

کانتورهای تشنه‌های اصلی در پرتوز و سطح تماس برای مواد برون‌ز در بر چرخ‌های با ماده IPS-Empress2 و تحت اعمال Dicor و پرمول دوم شرایط بارگذاری مورد 3 مطالب شکل 4 می‌باشد. در بر چرخ‌های با ماده سرامیکی Dicor و بر فراز ماده سرامیکی شکست‌کننده در مقاله‌ها با برون‌ز های با ماده سرامیکی مشاهده شد. مقدار حاکم تشنه‌های IPS-Empress2 اصلی در کانتور در مدل‌های و FEM2 به ترتیب معادل 75/3 مگاپاسکال و Dicor در بر چرخ‌های با ماده سرامیکی مشاهده شد.
شرايط بارگذاري نقش مهمي در نتایج حاصل از این مدل ایفا کرده و اطلاعات دقيقت در این زمينه مي تواند به تخمین يا مناسب نم باشد.

حذای مقدار تنشهای كششي برای برجه ساخته شده

بیشتر Dicor يجب برای مقایسه با برجه IPS-Empress2 مورد است. بود. به نظر مي رسد كه ميزت اصلی سرامیک Dicor مدل الأستیست کمتر آن مي باشد (جدول 3) که موجب انتقال بحرق تنش در پروتاندان پاي از طريق دو ماه با خواص انطاقي دري بهتر مي گردد. با وجود اين، به منظور ارزاباي توفر شکست برجه سي و احتمال سراميک ساخته شده دو ماهه، تحت شرايط بارگذاري نک تي سيك، حذای تنشهای بسته امده (MGS) با مشابه فلکسیالت (با مدول ماژارگي) 2 است ارائه مي شود. همان كه چنانچه دينه دیگر بر روی مي گردد مي تواند نسبت مي شود.

به نشانه كه در جدول 3 مشاهده نسبت همواره در برجه هاي ساخته شده از ماده MGS/MOR در مقایسه با برجه هاي ساخته شده از IPS-Empress2 كوچکتر است اين امر نشان دهنده را به دو البته ضريب اطماني بالاتر برجه هاي ساخته شده از ماده IPS-Empress2.

جدول 4 نسبت شرايط بارگذاري مورد دو مدل هاي FEM1 و FEM2 در پروتان تحت اختلاس MGS/MOR

<table>
<thead>
<tr>
<th>MGS/MOR</th>
<th>مدل</th>
<th>FEM مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>61/3378</td>
<td>IE2</td>
<td>FEM1</td>
</tr>
<tr>
<td>69/3273</td>
<td>IE2</td>
<td>FEM2</td>
</tr>
<tr>
<td>75/1529</td>
<td>Dicor</td>
<td>FEM1</td>
</tr>
<tr>
<td>75/1657</td>
<td>Dicor</td>
<td>FEM2</td>
</tr>
</tbody>
</table>

1. Maximal Generated Stress.
شکل 4. اندازه‌گیری تنها نسبت‌های براز می‌گردد تنها نسبت‌های B1-FEM 2, IPS-Empress2, A2-FEM 1, Dicor, B2-FEM 2, Dicor, A3-FEM 1, IPS-Empress2, A4-FEM 1, Dicor, B3-FEM 2, IPS-Empress2, B4-FEM 2, Dicor)
نتیجه‌گیری
نتایج بدست آمده از این مطالعه را می‌توان مطلوب زیر بررسید.

۱. مدل‌های دقیق کامپیوتری دندان‌های مندیل برای بررسی دامنه، مولر اول و مولر دوم و همچنین یک مدل پارامتری از برود سه واحده ساخته شد.

۲. نحوه توزیع تنش‌ها در پروتز و سطح‌های دندان‌های پایه تحت شرایط مختلف بازگذاری و استفاده از دماد پروتز تعیین گردید.

۳. اثر تنش‌های پرسی در سطح دماد پروتز و دندان و در صفحه ممسنی به دلیل مقادیر کم آنها قابل صرف‌نظر می‌باشد.

۴. زوایای تقریب دندان‌های پایه می‌تواند دارای تأثیرات غیرای نسبت به استحکام شکست برحسب سه واحده تأمین سرامیک باشد.

۵. مقادیر و نحوه اعمال یارب، عوامل تأثیر گذاری بر تشکیل طبقات می‌باشند.

تشکر و پاسخ
۱. بدين و سهلی از جمع‌آوری دکتر شجاع‌الدين شایک که از مشاور و راهنمای ایشان در زمینه علم پروتز در تدوین این مقاله بهره جستیت نگذاری و تشکر می‌نمایم.

۲. همچنین از مهندس فردی مدیرعامل محترم شرکت فدک صنعتگستر به سبب همکاری مؤثرشان تشکر می‌نمایم.

REFERENCES


6. Won-Suck OH, Anusavice KJ. Effect of connector design on the fracture resistance of all-ceramic
7. Hojjatie B, Anusavice KJ. Three-dimensional finite element analysis of glass-ceramic dental
partial dentures: A finite element analysis of the influence of restorative materials and abutment