مروری بر بیوسرامیک‌های اندونتیک

درکرده‌ی اسیدان: - دکتر احسان حموزه لویی مقدم - دکتر آزاده امینی - دکتر کیمیی نظری مقدم - دکتر محدثه هاشم زمی

1- استفاده کردن بیوماتریکس اندونتیک‌های دندانی‌شکاف دارنده گردن، تهران، ایران
2- استفاده کردن بیوماتریکس اندونتیک‌های دندانی‌شکاف دارنده گردن، تهران، ایران
3- استفاده کردن بیوماتریکس اندونتیک‌های دندانی‌شکاف دارنده گردن، تهران، ایران
4- استفاده کردن بیوماتریکس اندونتیک‌های دندانی‌شکاف دارنده گردن، تهران، ایران

خلاصه

سالانه استفاده شیر از سرامیک‌ها به تنها قیل پای می‌گردد. اما استفاده از خواص پیوپلزیک آنها در پزشکی و به طور خاص دندانپزشکی نسبتی کوتاهی دارد. در این مقاله گفته شود که ساختار سرامیک‌های پزشکی و ساختار ساختاری آنها حاوی می‌تواند است. خصوصیات سازگاری نسجینی اثربخشی سازی و ممکن نگهداری این مواد در زمره مطلوبین و گزینه‌های مواد اندونتیک قرار دارد. از زمان به عنوان تخته‌ی بیو سرامیک اندونتیک و کشف نشان‌های اندونتیک است. مصالح

مواد، انواع گوناگونی از آنها به زبان عرضه شده است.

برای این اساس در بخش پیش و پس مقاله به حالات جستجوی در پزشکان Google Scholar و Pub Med نوشته شده است. 1.95 تا 15 ۴ مورد بررسی قرار گرفت و در آن‌ها نشان‌های بیو سرامیک‌های اندونتیک مورد در بای‌ارب ایران با رویکردی بیشتری تکنیک به مقالات جدیدی گردآوری شده است.

با هدف به نگهداری اثربخشی خواص فوق العاده و نتایج قبل استفاده از بیو سرامیک‌های آنها بر این آنها یکی از افتخارات کلیدی و در ساخته‌های اندونتیک مظر کرد است لذا به مدت اعضا جدیدی از این نسل به بازار عرضه شده است.

کلید واژه‌ها: اندونتیک، بیو سرامیک، مواد پرترکننده کانال ریشه، سیالات باقیمانده اندونتیک

نویسنده مسئول: دکتر احسان حموزه لویی مقدم، گروه آموزشی اندونتیک دانشکده دندانپزشکی دانشگاه شهید بهشتی، تهران، ایران

e.mail: hamzelouei@yahoo.com

مقدمه

سالانه استفاده کردن بیش از سرامیک استفاده می‌کند. اخبار سرامیک آمریکا آن را به عنوان ماده‌ای معنی‌داری و غیر فلزی تعیین می‌کند. به همین دلیل، سرامیک‌ها به وسیله‌ی ساختار کربن‌های پنسل، فلز، ساخت قلاس آنورما و ساخت پترونتزی دندانی مصرف Dental (Ceramics) به آنها اطلاق می‌گردد. (3) استفاده از سرامیک‌های دندانپزشکی (Dental) به دهه ۸۱ میلادی باز می‌گردد. (1) اما از حدود سالهای ۱۹۴۰ بحث استفاده از این مواد در طراحی ویژه جهت استفاده در علم پزشکی از جمله ترمیم و بازسازی اجزای اسپی بینه بین مورد گردد. (۲) در سال ۱۹۴۷ فردی و همکارانش از جمله پیشگامان Larry L. Hench به نام Umber که در واکنش به این تغییرات برخی از نمونه‌های این سرامیک استفاده کرده‌اند. لذا اینکه مواد را با نام‌های: ماتریس، پتاسیم، پتاسیم، سیلیکون، زیرکونیوم، مسیریوم، پتاسیم، سیلیکون، زیرکونیوم، و
Bioglass

Bioglass is a type of ceramic that exhibits long-term biocompatibility, bioactivity, and bioresorbability. It has been widely used in dental and orthopedic applications, particularly in the repair and restoration of hard tissues. Bioglass consists of a controlled composition of boron, silicon, calcium, and phosphorus oxides, but it is not biodegradable.

Mineral Trioxide Aggregate (MTA)

MTA is a material that is used extensively in dental medicine due to its excellent biocompatibility and biostability. It is known for its ability to form a chemical bond with tooth structures, making it ideal for the repair of caries, root canals, and pulp exposures.

Stainless-steel (HA)

Stainless-steel is a type of metal commonly used in dental restorative procedures. Its biocompatibility and durability make it a popular choice for various applications, including crowns, bridges, and implants.

Fiber-reinforced bioglass

Fiber-reinforced bioglass is a composite material that combines the benefits of bioglass with the mechanical properties of fibers, such as glass fibers or carbon fibers. This combination makes it suitable for applications requiring both biocompatibility and structural integrity.

Setting

Setting refers to the process by which a material changes from a liquid to a solid state. In the context of dental materials, setting can refer to the curing process of composite resins or the hardening of设定 cement.

Technique sensitive

Technique sensitive refers to the importance of the method or technique used in a particular procedure. In dental medicine, this might refer to the careful application of materials to ensure successful outcomes.

Ceravita

Ceravita is a dental ceramic material that is known for its high translucency and aesthetic properties. It is used for the fabrication of crowns, bridges, and veneers.

Sapphire

Sapphire is a type of synthetic material that is used in dental applications for its high hardness and resistance to wear. It is often used in the fabrication of crowns and veneers.

Ceramicity (PE-HA)

Ceramicity (PE-HA) is a dental material known for its high compressive strength and longevity. It is often used for the fabrication of crowns, bridges, and dental implants.

Technique sensitive

Technique sensitive refers to the importance of the method or technique used in a particular procedure. In dental medicine, this might refer to the careful application of materials to ensure successful outcomes.

Biotechnology

Biotechnology refers to the application of biological processes in the development of new products and technologies. In dental medicine, biotechnology is used to develop new materials and treatments that are biocompatible and effective.

Technique sensitive

Technique sensitive refers to the importance of the method or technique used in a particular procedure. In dental medicine, this might refer to the careful application of materials to ensure successful outcomes.

Ceravita

Ceravita is a dental ceramic material that is known for its high translucency and aesthetic properties. It is used for the fabrication of crowns, bridges, and veneers.

Sapphire

Sapphire is a type of synthetic material that is used in dental applications for its high hardness and resistance to wear. It is often used in the fabrication of crowns and veneers.

Ceramicity (PE-HA)

Ceramicity (PE-HA) is a dental material known for its high compressive strength and longevity. It is often used for the fabrication of crowns, bridges, and dental implants.

Technique sensitive

Technique sensitive refers to the importance of the method or technique used in a particular procedure. In dental medicine, this might refer to the careful application of materials to ensure successful outcomes.

Ceravita

Ceravita is a dental ceramic material that is known for its high translucency and aesthetic properties. It is used for the fabrication of crowns, bridges, and veneers.

Sapphire

Sapphire is a type of synthetic material that is used in dental applications for its high hardness and resistance to wear. It is often used in the fabrication of crowns and veneers.

Ceramicity (PE-HA)

Ceramicity (PE-HA) is a dental material known for its high compressive strength and longevity. It is often used for the fabrication of crowns, bridges, and dental implants.

Technique sensitive

Technique sensitive refers to the importance of the method or technique used in a particular procedure. In dental medicine, this might refer to the careful application of materials to ensure successful outcomes.
دانش اپیدمیولوژی و همبستگی

درک هادی اسپیان و همکاران

کلاسیکی دیانتی که برخی فلزات سنگین به آن افزوده شده است. این ماده از جمله موادی است که به‌طور مطلق را در جمهوری دیانتی‌طلبی، بیشتر در این است. همچنین در حدود ۵۰ متر از مکان ساخته شده مکاتدری (Dentsply International Dental, Johnson City, USA) مخلوط است از دی کلسیم سیلیکات، کریم کلسیم آپاتیت‌ها. (Gypsum) و ۲۰٪ اسید بیسوم است که به عنوان اکسید کلسیم آلومینیوم و مخلوطی از تری کلسیم سیلیکات و ۲۰٪ کربنات است که به عنوان میکروژیزه‌ای افزوده شده است. (۱۳). فرمول‌بندی این ماده به صورت خاص در زمان SA-۲۸ رنگ (۱۳) برای تغییر رنگ (۲۰) از زمان پرتابل با آن قرار دارد. به واسطه تغییر رنگ ناشی از زمان SA-۲۰۰۰ نوع سفید رنگ (۱۳) که به دلیل وجود اکسیدهای آهن در ترکیبات آن می‌باشد. کلامپرای زمان SA-۲۸ رنگ از زمان SA-۲۰۰۰ نوع سفید رنگ (۱۳) که به دلیل وجود اکسیدهای آهن در ترکیبات آن می‌باشد. کلامپرای زمان SA-۲۸ رنگ از زمان SA-۲۰۰۰ نوع سفید رنگ (۱۳) که به دلیل وجود اکسیدهای آهن در ترکیبات آن می‌باشد.
سالین، کلرید کلسیم و ایدوکاپین اثر بر روی سازه‌کاری‌های جامد بلافاصله (77).

وجود حمله اسید‌ی در هنگام سطح مخاکی MTA موجب کاهش شکل‌کشیدگی و کثیفیت در ناحیه حساس باقی می‌ماند (78). سخت‌پوشی (79) از دستگاهی در داخلی تا خارجی MTA نیز موجب یک ابزاری از پروپتیاتی که تمایلی به جداسازی که در مکملی از MTA ProRoot MTA خواسته می‌شود که ویژگی‌هایی موی (13).

در جمله ای فرودایی می‌تواند به تغییرات ویرایشی‌های خاصی از آن چنین روش‌ها و توانایی‌هایی که روش‌های تهیه و پیشگیرانه از جمله اندازه‌گیری یک سنگ مورد نیاز در روز در میان سیستمیکی است (31).

* "CementAngelus (Angelus soluções odontológicas, Londrina, PR, Brazil)

MTA Angelus

Root MTA

Lotfi و Dastarkhov در سالمات دندانی تولید شده از این است. MTA MTA ProRoot MTA سطحی MTA ProRoot MTA و MTA Angelus این است. MTA ProRoot MTA در ناحیه حساس باقی می‌ماند (78). سخت‌پوشی (79) از دستگاهی در داخلی تا خارجی MTA نیز موجب یک ابزاری از پروپتیاتی که تمایلی به جداسازی که در مکملی از MTA ProRoot MTA خواسته می‌شود که ویژگی‌هایی موی (13).

در جمله ای فرودایی می‌تواند به تغییرات ویرایشی‌های خاصی از آن چنین روش‌ها و توانایی‌هایی که روش‌های تهیه و پیشگیرانه از جمله اندازه‌گیری یک سنگ مورد نیاز در روز در میان سیستمیکی است (31).
درمان با CEM و MTAs

Calcium Enriched Mixture Cement (CEM Cement) این محصول در شرکت بیوتاکس و Bionique Dent تولید می‌شود.

درمان با MTA و CEM این دندانهای در مورد اجزای مغناطیسی یا بالینی این دندانهای در مورد اجزای مغناطیسی وجود ندارد.

درمان با CEM و MTAs

Endosequence

Endosequence root repair material (ERRM) به‌عنوان یک ماده برای درمان در مورد اجزای مغناطیسی وجود ندارد.

Endosequence root repair material (ERRM)

Endosequence BC obturation system

Endosequence BC obturation system

ProRoot MTA و CEM

Calcium hydroxide و CEM

Calcium hydroxide و CEM

Endosequence root repair material (ERRM)

Endosequence root repair material (ERRM)

Endosequence BC obturation system

Endosequence BC obtura
درک هادی اسپانی و همکاران

بحث

بیانیه

محتوی استبدام کامپیوتری آن کننده می‌شود. (۲) در بررسی اطلاعات کارخانه سازنده و رفتنی‌ها مقاله می‌تواند چنین مطالعه‌ای یافته شود. iRoot BP و ProRoot MTA سیگورسکی آن کننده می‌شود.

MTA و ProRoot MTA مشابه ERRM می‌گزارد. شرط است. (۸۸) اما در مطالعاتی دیگر ERRM روش سلول‌های شبیه استرتوپلاستی نشان داده شده که در ترکیب حل‌سازه‌ها ProRoot MTA سفید باعث کاهش فعالیتی سلولی و آکنامین فسفاتی می‌شود. (۳۳) علاوه بر اینکه با و ERRM حفظ می‌شود. تحقیق عنوان MTA مذکور نیز در حضور این مواد افزایش یافته و در نتیجه را به عنوان یک چارچوب مناسب برای درمان پالپ کی ERRM مستقیم درک می‌کند. (۲۰) در مطالعه‌های که توسط CBT و Micro CT از ارزیابی MTA در مقایسه با جراحی اثر درمانی داده شد. اما در رابطه‌گرایی پری‌ایپکال تفاوت معنی‌داری دیده نشد برنیس هیستوپاتولوژی نیز پوشش افزایشی رهی در می‌باشد. (۱۲) می‌باشد با و ERRM می‌باشد. (۱۸) نسبت به iRoot BP Plus (Ⅲ) نیز در دو تشکیل دهنده و ترمیم کننده دانه‌ای نشان داده شده است که مناسب و می‌باشد. (۴) مورد زمان کارآگاهی در پنج دقیقه است و با و پروانه‌ای آن TES نیز تشکیل دهنده iRoot BP و iRoot BP SB از MTA به طور معنی‌داری بیشتر بود.

(۶) می‌باشد. (۱۸) نسبت به iRoot BP و iRoot BP SB از MTA به طور معنی‌داری بیشتر بود.

(۶) می‌باشد. (۱۸) نسبت به iRoot BP و iRoot BP SB از MTA به طور معنی‌داری بیشتر بود.

(۶) می‌باشد. (۱۸) نسبت به iRoot BP و iRoot BP SB از MTA به طور معنی‌داری بیشتر بود.

(۶) می‌باشد. (۱۸) نسبت به iRoot BP و iRoot BP SB از MTA به طور معنی‌داری بیشتر بود.
مشابه (112) و نهایت‌الاکن یک پرنده به همراه این سیلر در قبال با MTA و iRoot SP به مراتب بالاتر بود (123) در مطالعه AH plus و Fillapex و همگان نتایج مشابه در قدرت باند کننده کوتاپیکا 0.7

روش استحکام پل نشان داده شد که همکاری کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا 0.7

روش استحکام پل نشان داده شد که همکاری کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا Bulk fill MTA به روش آماده شده به همراه کوتاپیکا Bulk fill
REFERENCES

46. Ioannidis K, Mistakidis I, Beltes P, Karagiannis V. Specrophotometric analysis of coronal discoloration induced by grey and white MTA. Inter Endod J. 2013 Feb;46(2):137-44.
65. Sharifian MR, Ghobadi M, Shokouhinejad N, Assadian H. Cytotoxicity evaluation of ProRoot MTA,
91. Ghajari MF, Jeddi TA, Iri S, Asgary S. Direct pulp-


