بررسی آزمایشگاهی استحکام فشاری کامپوزیت‌های معمولی و متراکم شونده

دکتر امیر قاسمی - دکتر حسن تراب زاده - دکتر صدیقه میبدی

1- دانشیار گروه آموزشی ترمیمی دانشگاه علوم پزشکی شهدایی
2- دانشیار گروه آموزشی ترمیمی دانشگاه علوم پزشکی شهدایی
3- متخصص دندانپزشکی ترمیمی

چکیده

بررسی و هدف: خصوصیات مکانیکی ماده تاثیر زیادی در کارایی و موثریت یک ترمیم دارد. به همین دلیل هدف از این مطالعه بررسی استحکام فشاری کامپوزیت‌های متراکم شونده و مقایسه آنها با در نوع کامپوزیت معمولی می‌باشد.

روش بررسی: در این مطالعه تعداد پنج نمونه کامپوزیت سیلندری به ابعاد 46.4 میلی‌متر در یک مدل فلزی در تکه ساخته Radius Plus (SDI Limited) شدند. نمونه‌ها به صورت لایاپیوی و به دو مرحله تشکیل می‌شود. یک مرحله به مدت چهل و نه تابستان و تودیت تربیب پس از نیم ساعت و 12000. Charmfil Plus Alert و One-Way ANOVA فشار نظیر استحکام فشاری توسط دستگاه Spectrump و Mechanical Testing Machine تحت آنالیز آماری قرار گرفت.

پایگاه‌ها: از نظر آماری تفاوت معنی‌داری بین گروه‌ها وجود دارد. کامپوزیت Charmfil Plus کامپوزیت 1000 و 1000Z کامپوزیت داشتن یا نداشتن اثری ندارد. از نظر آماری تفاوت معنی‌داری بین کامپوزیت 1000 و 1000Z وجود ندارد. این نتایج نشان می‌دهد که استحکام فشاری بر اساس معمولی‌های دندانپزشکی مشابه است.

کلید واژه‌ها: کامپوزیت متراکم شونده - کامپوزیت معمولی - استحکام فشاری

تاریخ تهیه: 1387/11/27

نویسنده مسئول: دکتر حسن ترابزاده، گروه آموزشی ترمیمی دانشکده دندانپزشکی دانشگاه علوم پزشکی شهدایی

مقیدم

افزایش نیازها زیبایی و پیشنهادها کامپوزیت‌ها استفاده از مواد ترمیمی هنرمند را افزایش داده است. اکثر ترمیم‌های کامپوزیتی به نحو درست انجام شوند می‌توانند به عنوان یک ناهنجاری مناسب برای ترمیم‌های خلیف مانند آمادگی استفاده شوند، به علاوه با استفاده از کامپوزیت‌ها امکان ترکیب و حفظ بیشتری پیدا می‌شود و وجود دارد.

(1-2)

کامپوزیت‌های جدید ارائه شده دارای برخی کلیات بالاتری بالاتری به بافت نشان دهند. این چنین مورد که خواص فیزیک و مکانیکی متفاوت نیز از خود نشان دهنده است.
استحکام فشاری کامپوزیت‌های معمولی و …

روش بررسی

در این مطالعه تجربی از پنج نوع کامپوزیتی استفاده شد که مشخصات انها در جدول ۱ آورده شده است. برای هر گروه از کامپوزیت‌ها دهنده سیلیزوری در یک مولد فلزی دو تکه به ارتفاع نسبی منها، قطر چهار میلی‌متر ساخته شد. نمونه‌ها به صورت آنالیزش ضخامت و قطر میلی‌متر داشتند. مولد پک شده و هر لایه به مدت چهل ثانیه توسط دستگاه لاکیت کورس (RADIPLUS, SDI LIMITED, BAYSWATER, VICTORIA 3153, AUSTRALIA) نور داده شد. پس از درآوردن نمونه‌ها از مدل شش‌تایی

جدول ۱: نام، نوع و کارخانه‌سازنده مواد استفاده شده

<table>
<thead>
<tr>
<th>سازنده</th>
<th>نوع</th>
<th>شماره سربال</th>
<th>نام تجاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeneric/ pentron</td>
<td>Alert</td>
<td>متراکم شونده</td>
<td></td>
</tr>
<tr>
<td>wallingford/ CT/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dent Kist #265</td>
<td>Charmfil Plus</td>
<td>متراکم شونده</td>
<td></td>
</tr>
<tr>
<td>Dangejondone ,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gunpo, Gyenggi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>435/83 / Korea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3M, ST. Paul, MN, USA</td>
<td>199990318</td>
<td>مولوی</td>
<td>Spectrum</td>
</tr>
<tr>
<td>Dentsply Int. co., Milford, DE,USA</td>
<td>606.05.306</td>
<td>مولوی</td>
<td>Z 100</td>
</tr>
<tr>
<td>3M, ST. Paul , USA</td>
<td>8004 Al</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

بر طبق آزمون Z100 بین کامپوزیت P0.05 توسط Tukey's HSD، از نظر آماری تفاوت معنی‌داری وجود نداشت (P>0.05). اما بین کامپوزیت‌های P0.05 از نظر آماری تفاوت معنی‌داری وجود داشت (P<0.05). استفاده فشاری مواد از نظر شونده از بیشترین به کمترین به فرم دیده می‌باشد:

Z100 > P60 > Spectrum > Alert > Charmfil Plus

یافته‌ها

نتایج استحکام فشاری پنج ماده کامپوزیتی آزمایش شده در جدول ۲ آورده شده است. میانگین انحراف معیار از بیشترین که مربوط به کامپوزیت Z100 (266±18/77) مکاپاسکال بود (کامپوزیت 3 مکاپاسکال بوده تغییر مکاپاسکال بوده تغییر 37/84 ±23/84) مکاپاسکال بوده تغییر (Makapasakal) Charmpfil Plus کرد. مطالعه آماری One-way ANOVA تفاوت معنی‌داری در بین مواد آزمایش شده نشان داد (P>0.05).

جدول ۲: میانگین استحکام فشاری (Makapasakal) و انحراف معیار کامپوزیت‌های استفاده شده

<table>
<thead>
<tr>
<th>انحراف معیار</th>
<th>میانگین (Makapasakal)</th>
<th>کامپوزیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alert</td>
<td>25/16</td>
<td></td>
</tr>
<tr>
<td>Charmfil Plus</td>
<td>23/43</td>
<td></td>
</tr>
<tr>
<td>P60</td>
<td>32/50</td>
<td></td>
</tr>
<tr>
<td>Z 100</td>
<td>34/36</td>
<td></td>
</tr>
<tr>
<td>Spectrum</td>
<td>26/71</td>
<td></td>
</tr>
</tbody>
</table>
بحث

در این مطالعه استخراج فشاری نجات ماده کامپوزیت زرینی (P60, Alert, و خاصیت رنگداری (Spectrum TPH, و دو کامپوزیت عمومی (Charmfil Plus مورد بررسی قرار گرفت. استخراج فشاری مواد ترمیمی از اهمیت خاصی برخوردار است. این خاصیت ماده مخصوصاً در علائم جریزون بسیار مهم می‌باشد. زیرا از نظر فیزیوئولوژی، به خصوص در دندانهای داخلی ناحیه ایکلوزال و استرس‌های داخل دهان به خصوص در نواحی خلیف دهان را افزایش می‌دهد.

از آنجایی که یکی از شاخص‌های اصلی استخراج، آزمون استخراج فشاری است. اگر در این مطالعه از آزمون استخراج فشاری بر اساس مقایسه مواد کامپوزیتی مورد استفاده شاخص با Štefan استفاده شد، در مقایسه دو نوع کامپوزیت متراکم شونده و عمومی از یک کارخانه (3M) تفاوت آماری معنی‌داری نشان نداد. نتیجه Leticia این مطالعه به معنی انجام آزمون استخراج فشاری (Z100, P60 و مشابه و قابل مقایسه و با استفاده از نظر آماری تفاوت معنی‌داری بین این دو کامپوزیت وجود نداشت.

در مقایسه بین کامپوزیت Z100 و P60 اگر چه تفاوت در میزان ذرات غیر از ارگانیک آنها وجود دارد، اما این دو ماده دارای ذرات با اندازه، شکل و توزیع یکسانی می‌باشند. تست cement ارگانیک هر دو ماده حاوی می‌باشد. بر اساس مطلوبیت زرینی کامپوزیت کامپوزیت نسبت TEGDMA و Bis-GMA کامپوزیت Z600 و نسبت TEGDMA و Bis-GMA کامپوزیت P60 و نسبت TEGDMA و Bis-GMA کامپوزیت 400 بای 400 بای 400.

Bis-GMA و Monomer و نشا ماده کامپوزیت به غیر از اثرات افزایش کششی و خشکی TEGDMA (P60) به صورت خاص می‌باشد. مایکل Peutzfeldt و Asmussen با استفاده از افزایش کششی و خشکی TEGDMA Z100 می‌باشد. (8) اما با توجه به دلیل اضافه شدن Z100 به صورت مورد پ60 به صورت Monomodal، Non-hybrid به درجه علاوه بر این عوامل دیگری مانند نوع رویتان و و فیلر، درجه
Nasihat-Kirri

Akkhaw Kamybozitehaye Matarak Shionodeh az Nafar Peshi az
uxoosiyan Kariyeh chehreh-bar ateza-ye kamybozitehaye Mousumiyeh ishtedad
vali azamastuxasteh shahrareh Angha e Ather e Chehreh-ye Z100
kamybozitehaye Mousumiyeh Namiyeh. Kamybozitehaye Rezin-e Z100
beheshtehastuxasteh shahrareh ra Tanha dadeh ke qabir Maqabelaye ba
kamybozitehaye P60 bodeh va kamybozitehaye Charmfil Plus
kehtan minaastuxasteh shahrareh ra dastaned. Alert

Tashkar va Qerdandani

Ain maleh taht Bamiasheh Mordeh-ye tahvighaye Nezam-e Shekuyeh
uxoosiyan Rezineh Shadi ke Bodoesheh Merabt
Tashkar va Qerdandani Khoxsh va Aragim Minaaideh.

REFERENCES

1. Cobb DS, Macgregor KM. The physical properties of packable and conventional posterior resin- based
3. Brandao L, Adabo GL, Vaz LG, Saad JR. Compressive strength and compressive fatigue limit of conventional
4. Manhart J, Kunzelman KH, Chen HY, Hickel R. Mechanical properties and wear behavior of light-cured
8. Asmussen E, Peutzfeldt A. Influence of UEDMA BisGMA and TEGDMA on selected mechanical properties of
11. Da Fonte Porto Carreiro A, Dos Santos Cruz CA, Vergani CE. Hardness and compressive strength of indirect
12. Kelsey WP, Latta MA, Shaddy RS, Stanislav CM. Physical properties of three packable resin- composite
13. Beun S, Glorieux T, Devaux J, Vreven J, Leloup G. Characterization of nano filled compared to universal and