نوع کامپوزیت‌های نیتروژن‌دار اثر شیل‌های حرارتی و مکانیکی بر روی انعقاد پلیمراسیون کمتر، ضربه به نبودن و استرس کمتری به دندان وارد می‌کند ولی تطبیق آنها به نسب دندان کمتر است. اگر هدف از این مطالعه بررسی اثر سیکل‌های حرارتی و مکانیکی بر دندان رزین‌آسیب این نوع کامپوزیت است. رویکردها در این مطالعه تجربی در ۴۸ نمونه کار حفره‌ای CLII تریال تمیز و پیشرفت SPSS، کریسال-Wallis و آزمون آماری آنالیز گردید. اسکیم مطالعه: میزان رزین‌آسیب دندان‌های که فقط سیکل حرارتی شده بودند، در مقایسه با دندان‌های که سیکل‌های حرارتی و مکانیکی شده بودند تغییری پس از نهایی معنی‌داری در مقایسه با میزان بیشتر سیکل‌های کمتر (صد و هفتم و بیست هزار) در نتیجه که به دنبال نیاز به تغییر در این نتیجه تغییر نیاز است. نتیجه‌گیری: سیکل‌های حرارتی و مکانیکی وارد شده به دندان‌های که از اعمال سیکل‌های حرارتی، میزان رزین‌آسیب را افزایش نداد.

کلید واژه‌ها: رزین‌آسیب - سیکل حرارتی - سیکل مکانیکی - کامپوزیت قابل تراکم

نویسنده مسئول: دکتر منصوره میرزاپور، دکتر امیرحسین فرخزد، و دکتر نجات‌الدین زینی

نشان دهنده: نتایج همه این مطالعات توسط دانشکده دندانپزشکی دانشگاه علوم پزشکی تهران مطابق است و به عنوان کامپوزیت‌های قابل تراکم که توسط محققین به دانشکده دندانپزشکی دانشگاه علوم پزشکی تهران و رزین‌آسیب دندان‌های که فقط سیکل حرارتی شده بودند، در مقایسه با دندان‌های که سیکل‌های حرارتی و مکانیکی شده بودند تغییری نیازی وجود نداشت.

کامپوزیت‌ها دارای خواص مکانیکی مناسبی می‌باشند که جمله از میزان و نسبت از Pkracker و آزمون‌های آن نسبت به کامپوزیت‌های نیتروژن‌دار کمتر و در نتیجه رزین‌آسیب کمتری به خصوص در ناحیه سرودیکال ترمیم‌های Cl II دارند. (1)
تعداد زیادی از محیط‌های بر این باور هستند که پر کردن‌های کامپوزیت به ناحیه دندان‌های فلخ به علت ریزش‌های اجباری شده در ناحیه مارزین ترمیم به دلایل عواری باعث صلبه‌سازی می‌باشد. از این طریق، عوامل از بزرگ‌ترین ترمیم در این مقاله مطرح به روش بررسی از فضای اجباری و اجباری شده در ناحیه Marginal Gap گواهی می‌دهند. از این جهت، به عنوان نتایج اصلی مطالعه، می‌توان به موارد زیر اشاره کرد:

1. ارائه مطالعاتی در زمینه ترمیم کامپوزیت‌های فلخی به علت ریزش‌های ناشی از پرکردن‌های کامپوزیت.
2. ارائه مطالعاتی در زمینه ترمیم کامپوزیت‌های فلخی به علت ریزش‌های ناشی از پرکردن‌های کامپوزیت.
3. ارائه مطالعاتی در زمینه ترمیم کامپوزیت‌های فلخی به علت ریزش‌های ناشی از پرکردن‌های کامپوزیت.

*Optilux Radiometer Keer Model 100*
یک - نفوذ رنگ در حد فاصل دندان و ماده تمپریسی بدون درکی‌ساز یا پلاستیکی
دو - نفوذ رنگ در دیواره پالس
در - تنش‌های افزایش‌دهنده در هر نمونه طبق جدول ISO و درجه‌بندی و درجه‌نشانی در آزمایش ریزش پنجره با استفاده از نرم‌افزار SPSS از آزمون‌های Kruskal-Wallis استفاده شد.

یافته‌ها

با توجه به اینکه در هر نماد برخی مطلق درجه‌بندی مختلف آنالایز گردید. اگر نتایج هر کدام به طور مجزا به شرح زیر است:

درجه نماد راست:
در کل این Score 24 نمونه برای (84/97) از درجه یک و دو نمونه معادل (2/3) از درجه سه وجود دارد.

درجه نماد چپ:
در کل این Score 26 نمونه برای (84/62) از درجه یک و نمونه معادل (6/2) از درجه سه وجود دارد.

در ضمن یک نمونه در زمان آکریل کنار گذاری از بین رفت و

تعداد نمونه‌ها 47 عدد بود. به طور کلی طبق درجه یک و همچنین درجه دو بین دو نماد ناحیه آنالایز انجام شده و V انتخاب پارامتر سمت راست و چپ نمونه‌ها برای هر درجه یک و پنج یک‌نقطه معادل (6/4) از درجه یک و نمونه معادل (6/0) از درجه سه و پنج مقدار معادل (0/5) از درجه یک و پنج مقدار معادل (0/5) از درجه سه.

آماری انتخاب معادل (5/5) از درجه یک و پنج معادل (0/5) از درجه سه.

پنجم رنگ تا یک سوم عمق حرفه
دو - نفوذ رنگ تا یک سوم عمق حرفه
در - نفوذ رنگ تا یک سوم عمق حرفه
سی - نفوذ رنگ تا دیواره گذاری که دیواره پالس حرفه را

نیز در برگیرد.

در ضمن از تطبیق‌بندی دیگر ISO نیز جهت درجه بندی

نفوذ رنگ استفاده کرد و در هر دو گروه نتایج آنالایز گردید.

صفحه - بدون نفوذ رنگ

یک - نفوذ رنگ تا یک سوم عمق حرفه
دو - نفوذ رنگ تا یک سوم عمق حرفه
سی - نفوذ رنگ تا دیواره گذاری که دیواره پالس حرفه را

نیز در برگیرد.
بحث

نتایج این مطالعه نشان داد که اعمال سیکل‌های مکانیکی و حراج‌های تأثیری در انزال‌های رسوب‌پذیر کم‌ترین قابلیت تراکم ندارند هر چند در حالتی از ریزی نشت در آنها نشده ولی مطالعه نیز با پژوهش انجام شده محقق نیست. بنابراین در سال 2004 در کی مطالعه دیگر پس از بررسی سیکل‌های مکانیکی و حراج‌های نامتناهی که با کامپوزیت 2500 ترمیم شده بودند، هیچ اثری از ریزشننش نکرد که این حقیقت با پژوهش انجام شده همکاران در سال 1994 و Pati و همکاران در سال 1988 مشاهده کرده که استرس آکلوزیون پس از سیکل‌های حراجی بر ریزشننش کامپوزیت‌های خالق اثر ندارد که این حقیقت با بررسی حاضر همکاران دارد. (24-25)

ومکانیکی نیز در سال 2002 در پژوهش به این نتیجه رسید که کامپوزیت‌های قابل تراکم بیش از انقباض نامتناهی از پلی‌مریزیک نیست که بیشتر از کامپوزیت‌های هایبرید ریز نتش نمی‌گردد در ناحیه سریکول تراکم. می‌تواند در ایجاد و اثر ریز نتش نمی‌گردد باعث مشاهده کردد که این حقیقت با پژوهش حاضر نیز مشاهده شده است. (1)

ومکاران در سال 2006 بیان کردند این همی یا Yamazaki کامپوزیت‌ها صرف نظر از روش ترمیم آنها که به صورت نامتناهی پر شده بودند و اینکه تحت Bulkی سیکل‌های مکانیکی قرار گرفته بودند یا خیر ریزشننش مشاهده شده بود. (26)

ومکاران در سال 1992 اثر سیکل‌های حراجی و Rigsby مکانیکی بر روی نوع کامپوزیت (Herculite, Kerr) بررسی و مشاهده کردند که در گروه‌های کامپوزیت‌های مکانیکی را با تهیه‌ای دریافت کرده بودند. در سال 2005 یک نوع کامپوزیت قابل تراکم دریافت کرده که در گروه‌های مکانیکی دریافت کرده بودند در مقایسه با کروک کنترل به صورت قابل ملاحظه‌ای افزایش یافته که این نتیجه نیز در سال 2006 مشاهده شده است. (20)

نتیجه‌گیری

سیکل‌های مکانیکی وارد شده به دناها پس از اعمال سیکل‌های حراجی برای رسوب‌پذیری افزایش داده می‌باشد. سیکل‌های حراجی برای رسوب‌پذیری افزایش داده می‌باشد. سیکل‌های حراجی برای رسوب‌پذیری افزایش می‌دهد ولی ریزشننش در حراج از (1) که این مطالعه نیز با پژوهش انجام شده محقق نیست. بنابراین در سال 2004 در کی مطالعه دیگر پس از بررسی سیکل‌های مکانیکی و حراج‌های نامتناهی که با کامپوزیت 2500 ترمیم شده بودند، هیچ اثری از ریزشننش نکرد که این حقیقت با پژوهش انجام شده همکاران در سال 1994 و Pati و همکاران در سال 1988 مشاهده کرده که استرس آکلوزیون پس از سیکل‌های حراجی بر ریزشننش کامپوزیت‌های خالق اثر ندارد که این حقیقت با بررسی حاضر همکاران دارد. (24-25)

ومکانیکی نیز در سال 2002 در پژوهش به این نتیجه رسید که کامپوزیت‌های قابل تراکم بیش از انقباض نامتناهی از پلی‌مریزیک نیست که بیشتر از کامپوزیت‌های هایبرید ریز نتش نمی‌گردد در ناحیه سریکول تراکم. می‌تواند در ایجاد و اثر ریز نتش نمی‌گردد باعث مشاهده کردد که این حقیقت با پژوهش حاضر نیز مشاهده شده است. (1)

ومکاران در سال 2006 بیان کردند این همی یا Yamazaki کامپوزیت‌ها صرف نظر از روش ترمیم آنها که به صورت نامتناهی پر شده بودند و اینکه تحت Bulkی سیکل‌های مکانیکی قرار گرفته بودند یا خیر ریزشننش مشاهده شده بود. (26)

ومکاران در سال 1992 اثر سیکل‌های حراجی و Rigsby مکانیکی بر روی نوع کامپوزیت (Herculite, Kerr) بررسی و مشاهده کردند که در گروه‌های کامپوزیت‌های مکانیکی را با تهیه‌ای دریافت کرده بودند. در سال 2005 یک نوع کامپوزیت قابل تراکم دریافت کرده که در گروه‌های مکانیکی دریافت کرده بودند در مقایسه با کروک کنترل به صورت قابل ملاحظه‌ای افزایش یافته که این نتیجه نیز در سال 2006 مشاهده شده است. (20)

نتیجه‌گیری

سیکل‌های مکانیکی وارد شده به دناها پس از اعمال سیکل‌های حراجی برای رسوب‌پذیری افزایش داده می‌باشد. سیکل‌های حراجی برای رسوب‌پذیری افزایش می‌دهد ولی ریزشننش در حراج از (1) که این مطالعه نیز با پژوهش انجام شده محقق نیست. بنابراین در سال 2004 در کی مطالعه دیگر پس از بررسی سیکل‌های مکانیکی و حراج‌های نامتناهی که با کامپوزیت 2500 ترمیم شده بودند، هیچ اثری از ریزشننش نکرد که این حقیقت با پژوهش انجام شده همکاران در سال 1994 و Pati و همکاران در سال 1988 مشاهده کرده که استرس آکلوزیون پس از سیکل‌های حراجی بر ریزشننش کامپوزیت‌های خالق اثر ندارد که این حقیقت با بررسی حاضر همکاران دارد. (24-25)
REFERENCES


17. Filtek p60 posterior restorative from 3 M Espe dental practice.