بحث نویسندگی:
در این مطالعه، آزمایش‌گاهی از سه نوع کامپوزیت تقویت شده با فیبر (گرافیت، سیگنیون، گل کلاس) برای ویسکوزیتی و فیبر مستطیلی (25 × 25 میلی‌متر) توسط یک مدل پلاکی بسکی گل‌کلاس شکل دار استفاده شد. در مورد هر نوع کامپوزیت، در گروه نمونه با فیبر و بدون فیبر (گروه کنترل) تهیه و پس از گیرش دقیقه 37 درجه بسته بود. نتایج آزمون خمش سه نقطه‌ای برای فیبر نیوتون با بکارگیری یک بیلی‌متر در دقت نقره‌گر در مدت 24 ساعت، این آزمون انجام شد. بعد از مقایسه داده‌ها از آزمون‌های t-test و ANOVA در مبحث شکل در سطح اطمینان 0.05، نتایج مشابه مشاهده شد. در سه نوع کامپوزیت تقویت شده با فیبر، ابزاری گرافیت، سیگنیون و گل کلاس به ترتیب میزان خمش برای کامپوزیت‌های تقویت شده با فیبر رشد کرد.

کلمات کلیدی: رژین‌های کامپوزیتی - استحکام خمشی - فیبر - ویسکوزیتی T

نظرات من: دکتر رامین مشرف، گروه آموزشی پروتئزی در دانشگاه علم پزشکی اصفهان

مقدمه
پروتئزی پارسیل ثابتی که از رژین‌های کامپوزیتی تقویت شده با فیبر برای تهیه می‌شود، جنتایی‌ترین هستند. این مدل در اثر فرایند تهیه می‌شود و در هنگام تهیه دارای استحکام عالی و جلوگیری از برخورد انرژی عمل می‌کند.

Chapter: N

چکیده
زمینه و هدف: یکی از روش‌های افزایش استحکام خمشی رستوران‌های غیرمستقیم کامپوزیتی، تقویت با فیبر است. این پژوهش به تحقیق کامپوزیت ویسکوزیتی خمشی به هدف افزایش استحکام خمشی سه نوع رژین کامپوزیتی تقویت شده با فیبر می‌پردازد.

روش بررسی: در این مطالعه، 27 نمونه مکعب مستطیلی (25 × 25 میلی‌متر) توسط یک مدل پلاکی گل‌کلاس ساخته شد. در مورد هر نوع کامپوزیت، در گروه نمونه با فیبر و بدون فیبر (گروه کنترل) تهیه و پس از گیرش دقیقه 37 درجه بسته بود. نتایج آزمون خمش سه نقطه‌ای برای فیبر نیوتون با بکارگیری یک بیلی‌متر در دقت نقره‌گر در مدت 24 ساعت، این آزمون انجام شد. بعد از مقایسه داده‌ها از آزمون‌های t-test و ANOVA در مبحث شکل در سطح اطمینان 0.05، نتایج مشابه مشاهده شد. در سه نوع کامپوزیت تقویت شده با فیبر، ابزاری گرافیت، سیگنیون و گل کلاس به ترتیب میزان خمش برای کامپوزیت‌های تقویت شده با فیبر رشد کرد.

کلمات کلیدی: رژین‌های کامپوزیتی - استحکام خمشی - فیبر - ویسکوزیتی

پژوهشگر

نویسنده من: دکتر رامین مشرف، گروه آموزشی پروتئزی در دانشگاه علم پزشکی اصفهان
e.mail: mosharraf@du.ac.ir

بارشه مقاله: ۱۳۹۸/۰۵/۱۳

اصلاح نهایی: ۱۳۹۸/۰۵/۱۳

کتابخانه: مقاله یک میلی‌متری از خصوصیات فیزیکی و شیمیایی خود، ترکیبی یک خصوصیاتی را بپیدا می‌کند که به‌نهایت نمی‌تواند آنها را ایجاد کند. این خصوصیاتی مکانیکی رژین‌های کامپوزیتی تقویت شده با فیبر به طرق مختلف تحت تأثیر قرار می‌گیرند و عوامل مؤثر بر استحکام آنها عبارتند از: موقعیت، تعداد و اتصال فیبرها به ماتریکس کامپوزیتی. خصوصیات خصوصیات و جنبه آن ماتریکس کامپوزیتی (۲)، متغیرهای زیادی بر ویژگی‌های کلی باید ترجمه‌ای کامپوزیتی تقویت شده با فیبر T
تأثیر فیبر و نوع کامپوزیت در استحکام خشی سه نوع رزین کامپوزیت

شکل 1: مشکافار پلیکسی کلاس شاهب در فیبر استفاده نشد. در ابتدای یک یا دو میلی‌متر از کامپوزیت مورد استفاده در فک مولد قرار داده و مطابق و به مدت چهل ثانیه با استفاده از کیور دستی (Monitex ‘Bluex, GT1200’, Monitex Industrial Co., Taiwan) LED کیور شد. عمل تاشی از دو سمت راست و چپ تا به مدت چهل ثانیه تکرار گردید. زمان تاشی‌های سومی و دومی به هوالی آزاد انجام شد تا اتصال لایه‌های مختلف کامپوزیت به نظر در دل و وجود امکان چندپذیری باشد. (۲۰) پس از آن لایه دیگری از کامپوزیت نکروزی در روزی اول قرار داده و سطح سه بار از جوهر مختلف تحت تابش نور قرار گرفت. گروه‌های آزمونی پس از قرار دادن یک یا دو میلی‌متری از کامپوزیت و تا به این زمان که زیر می‌کشد، کامپوزیت شاهب، یک برچ ۲۵ میلی‌متری از فیبر تقویت گردید (Fiber-braid, NSI Dental PTY., New south well, Australia) کامپوزیت مورد استفاده آغشته شد و بر روی لایه کامپوزیت اول گذاشته و به مدت دو ثانیه کیور گردید. Non-impregnated

نمونه مشابه در همه گروه‌ها و مدل‌های دیگر استفاده از جمله فیبرهای غیر آغشته (Non-impregnated) مورد استفاده بود. در نهایت گروه‌ها کامپوزیت و گروه‌های در دسترس داشتند.
جدول 1: کامپوزیت های مورد استفاده در مطالعه حاضر

<table>
<thead>
<tr>
<th>کارخانه سازنده</th>
<th>کامپوزیت مورد استفاده</th>
<th>شرایط تابش نور</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSI</td>
<td>Belle Glass HP, Kerr/Sybron, Orange, Calif. USA</td>
<td>به مدت بیست دقیقه در دمای 135 درجه و فشار شش بار.</td>
</tr>
<tr>
<td>Belle Glass HP Curing Unit</td>
<td></td>
<td>تحت تابش Signum HiLite power به مدت بیست دقیقه در 6000-5000 نانومتر</td>
</tr>
<tr>
<td></td>
<td>Signum; Heraeus Kulzer GmbH, Wehrheim, Germany</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Labolight; GC Corp</td>
<td>به مدت بیست دقیقه در 6000-5000 نانومتر</td>
</tr>
<tr>
<td>Gradia; GC Corp, Tokyo, Japan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

روی فیبر قرار داده شد و پس از پوشاندن سطح آن با یک لایه پلکسی گلاس به همان صورت گروه همبند به دست آمده از جهات مختلف تحت تابش نور قرار گرفت.

شدت تابش نور با دستگاه لایت کیور دستی به کمک (Optilux Radiometer Model 100, Kerr Sybron, Danbury, CA, USA) هفت‌صد میلی‌وات بر سانتی‌متر مربع می‌باشد. در نهایت نمونه‌ها به مدت لازم در دستگاه تابش نور (بر اساس سیستم کامپوزیتی) قرار گرفتند. پس از خروج نمونه‌ها از مولد شکاف‌دار اضافه‌های آنها توسط دیسک کاغذی حذف (Electronic Digital Caliper, Minova Co., Osaka, Japan) شد و ابعاد آنها به کولیس دیجیتال با دقیس 0.01 میلی‌متر اندازه‌گیری و نمونه‌هایی از مطالعه حذف و با نمونه‌های جدید یا جابجایی شدند. نمونه‌ها به مدت 48 ساعت در آب مفرط 37 درجه گرمایش شدند و با ساختار پس از خروج از ان محیط (برای برشگشای دما آنها به دما محیط) در دمای اتاق تحت آزمایش قرار گرفتند. آزمون خشک سه تکراری بر روی پایه‌های به فاصله بیست میلی‌متر و با نیروی بیست نیوتون با سرعت یک میلی‌متر در دقیقه و با TLCLO, Dartec series, Universal Testing انجام شد. نیروی دستگاه بر وسط نمونه‌ها که قبل از نشن‌گذاری شده بودند وارد و بیشتر نیروی دستگاه در موقع شکست (N) ثبت و به کمک فرمول S=3FL/2bd2 به طور دقیق می‌باشد.
جدول 2: میانگین استحکام خمشی نمونه‌های موجود در کرومها آزمایشی (رکابه‌کاری)

<table>
<thead>
<tr>
<th>انحراف معیار</th>
<th>فیبر</th>
<th>کامپوزیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/24</td>
<td>7/7/20</td>
<td>7/7/20</td>
</tr>
<tr>
<td>1/5/8</td>
<td>1/5/8</td>
<td>1/5/8</td>
</tr>
<tr>
<td>8/7/5</td>
<td>8/7/5</td>
<td>8/7/5</td>
</tr>
<tr>
<td>0/16</td>
<td>0/16</td>
<td>0/16</td>
</tr>
<tr>
<td>8/28</td>
<td>8/28</td>
<td>8/28</td>
</tr>
<tr>
<td>1/28</td>
<td>1/28</td>
<td>1/28</td>
</tr>
<tr>
<td>6/37</td>
<td>6/37</td>
<td>6/37</td>
</tr>
</tbody>
</table>

در آنها ممکن است به صورت طولی یا عرضی دچار شکست شوند. این شکست ممکن است در ماتریس کامپوزیت، حد فاصل ماتریس و فیبر یا در داخل خود فیبر اتفاق بیفتد (13). در بررسی حاضر مطالعات شکستها در ماتریکس کامپوزیت و یا در حد فاصل ماتریکس و فیber اتفاق افتاد. در برخی از مطالعات مشخص شده که استحکام خمشی ترمیم‌های کامپوزیت با کاهش درصد حجم فیبرها نسبت به حجم کی ترمیم افزایش می‌یابد و به این ترتیب توصیه می‌گردد که فیبرها پیل ایالی بر خلاف فیبرها گلاس در سمت کششی (دور از محل اعمال نیرو) قرار داده شوند. البته توجه به این نکته ضروری است که قرار دادن کامل این فیبرها در سمت کششی می‌تواند منجر به افزایش تضخیر سطحی ترمیم و در نتیجه افزایش تجمع پلاک شود (5). در این مطالعات و برخی مطالعات مشابه، به همین دلیل و نیز به دلیل دوباره در ساخت چین نمونه‌های باریکی، فیبرها در سطح نمونه قرار داده شدند. (20-21) از آنجا که در تمام گروه‌های مورد بررسی چنین وضعیتی ایجاد شد که این نتایج آزمایشات مربوط به مقاومت گروه‌های این پژوهش با بی‌پیشنهاد خلی وارد گردید.

در این بررسی نماینده برخی مطالعات دیگر مشخص گردید که استفاده از فیبر سبب افزایش معنادار استحکام با انجام t-تست مشخص شد که در تمام گروه‌ها استفاده از فیبر سبب افزایش معنادار استحکام خمشی شده است. (0<0.01)

بیان شکست نمایش داده شده در ماتریکس کامپوزیت و یا در حد فاصل ماتریکس و فیبر اتفاق افتاد. البته به دلیل کرکچی بودن نمونه‌ها امکان تفکیک بین شکست‌هایی که در ماتریکس کامپوزیت و در حد فاصل ماتریکس و فیبر روی داده ودند وجود نداشت. اما با اطمینان می‌توان گفت که هیچ‌گونه شکستی در خود فیبر دیده نشد.

بحث
در این بررسی آزمایش‌گاهی استحکام خمشی نمونه‌های میله‌ای شکل کامپوزیت از سه نوع کامپوزیت تقویت شده رایح در ایران در دور گروه دارای فیبر و بدون فیبر انتظارگیری شدند. در چنین بررسی‌هایی از ازمون خمش سه نقطه استفاده می‌شود. در مواد ایزوتروپیک نتایج این (Simple beam theory) تست از نظریه میله ساده (Simplified beam theory) پیروی می‌کند اما در موارد غیر ایزوتروپیک همچون کامپوزیت‌های تقویت شده با فیبر توجه به خمش بدون نیز در نظر گرفتن نیروهای حرارتی امکان پذیر نیست. نحوه شکست نمونه‌های کامپوزیت تقویت شده با فیبر بسیار پیچیده است. این میلی‌ها در اثر نیروهای خمشی و در اثر کشش حاصل
سفر مورد استفاده به‌ستگی داشته‌باشد. به استحکام کامپوزیت پوشش‌نداره، قبلاً در پی‌های کامپوزیت وی‌پی و وزن‌های جذب آب مجموعه کامپوزیت وی‌پی مشتقات دارد. (21)

سفر مورد استفاده در این بررسی از نوع‌های غیر پوشش‌نداره (Non-impregnated) آغشته (Ash) می‌شود. (22)

نوع‌های کامپوزیت، سوراخ‌ها و دانه‌های در آتی‌فل استحکام خصیت‌های کامپوزیت نموده و همکارهای این استحکام با پوشش‌نداره آغشته و غیر آغشته داخل بار ماده را واحدهای بار شکل می‌دهند و استحکام دانه در کامپوزیت وی‌پی‌چمتر. مثلاً در برای کامپوزیت که به شکل دانه‌ای باشد، همکارهای این استحکام دانه از دو غیر پیش‌بینی و فعالیت‌های باز با شکل استحکام دانه که در صورت استحکام از فیبر‌های آگشته انتظار می‌گرفت که استحکام خصیت نموده قایدی از نظر دویی بی‌شک بوده باشد. البته این امر خلاصه می‌تواند غیر از گروه‌های سه‌گانه به وجود نمی‌باشد.

با توجه به سطح‌های این مطالعه (استحکام از نموده‌های پیش‌بینی شکل، کاربرد فیبر‌های غیر آغشته و...) پیش‌بینی می‌شود در آینده این بررسی با انجام تست ری دانه‌های طبیعی خارج شده و یا تهیه نموده‌های که به شراپیت باینی تبدیل به شکل استحکام انجام گردند. همچنین باید به شناخت از ترموپالیتیک و بارک‌شیمیایی دانیمکات نتایج مقایسه شوند.

نتیجه‌گیری

براساس شرایط آزمایش‌گاهی این بررسی مشخص شد که تقویت با پیش به نحو مشخصی سبب تقویت استحکام خصیت از نموده‌های کامپوزیت تقویت شده با پردازش دانه‌ای و نوع کامپوزیت پوشش‌نداره می‌تواند عامل مؤثری در استحکام خصیت نموده کامپوزیت تقویت شده با پردازش دانه‌ای به‌کار می‌رود.

کلمات کلیدی

غیرکامپوزیتیون‌می‌شود (21،22) و این Ellakwa حال (27) در نظر بررسی نیز می‌تواند استحکام نموده که در آتی‌فل استحکام خصیت نموده کامپوزیت تقویت شده با پردازش دانه‌ای و نوع کامپوزیت پوشش‌نداره می‌تواند عامل مؤثری در استحکام خصیت نموده کامپوزیت تقویت شده با پردازش دانه‌ای به‌کار می‌رود.

کلمات کلیدی

غیرکامپوزیتیون‌می‌شود (21،22) و این Ellakwa حال (27) در نظر بررسی نیز می‌تواند استحکام نموده که در آتی‌فل استحکام خصیت نموده کامپوزیت تقویت شده با پردازش دانه‌ای و نوع کامپوزیت پوشش‌نداره می‌تواند عامل مؤثری در استحکام خصیت نموده کامپوزیت تقویت شده با پردازش دانه‌ای به‌کار می‌رود.

کلمات کلیدی

غیرکامپوزیتیون‌می‌شود (21،22) و این Ellakwa حال (27) در نظر بررسی نیز می‌تواند استحکام نموده که در آتی‌فل استحکام خصیت نموده کامپوزیت تقویت شده با پردازش دانه‌ای و نوع کامپوزیت پوشش‌نداره می‌تواند عامل مؤثری در استحکام خصیت نموده کامپوزیت تقویت شده با پردازش دانه‌ای به‌کار می‌رود.

کلمات کلیدی

غیرکامپوزیتیون‌می‌شود (21،22) و این Ellakwa حال (27) در نظر بررسی نیز می‌تواند استحکام نموده که در آتی‌فل استحکام خصیت نموده کامپوزیت تقویت شده با پردازش دانه‌ای و نوع کامپوزیت پوشش‌نداره می‌تواند عامل مؤثری در استحکام خصیت نموده کامپوزیت تقویت شده با پردازش دانه‌ای به‌کار می‌رود.
REFERENCES