تأثیر فیبر و نوع کامپوزیت در استحکام خشکی سه نوع رزین کامپوزیت تقویت شده با فیبر

دکتر رامین مشرف - دکتر فرناز برجیان - دکتر هانیه محمدی - دکتر سیهده ترکان

1- انتخاب کردن رزین‌های پویتریکا دندانی و مترکتهای قدارن در انجام آزمایشات استحکام شکاف‌دار,

2- دندان‌پزشک

3- دستیار تخصصی گروه دندانپزشکی دندانپزشکی دانشگاه علوم پزشکی اصفهان

چکیده

زمینه و هدف: یکی از روشهای افزایش استحکام خشکی رستوران‌های غیرمستقیم کامپوزیتی، تقویت با فیبر است. ترکیب کامپوزیت پوشانده نیز نقش مهمی در استحکام خشکی این گونه نرم‌کننده‌های دارد. هدف از این مطالعه، بررسی تأثیر استفاده از فیبر در استحکام خشکی سه نوع رزین کامپوزیت تقویت شده با فیبر (فرانجیا، سیگنیو، ال‌گلاس) بود.

روش بررسی: این مطالعه تجربی- آزمایشگاهی از سه نوع کامپوزیت تقویت شده با فیبر (فرانجیا، سیگنیو، ال‌گلاس) کمک مستطیلی (25 × 78 میلی‌متر) تیست کرده و پلاک‌کردن شکاف‌دار ساخته شد. در مورد هر نوع کامپوزیت در گروه تقویت، در گروه تقویت مانند دیگر گروه‌ها با فیبر و بدون فیبر (گروه‌ها) تیست و پس از نگهداری در دمای 37 درجه بر سطح سخته شده بود. به مدت 72 ساعت، تحت آزمون خشک نهایی بکار آمد. در نهایت آزمون‌های استحکام خشکی، برای مقایسه داده‌ها از آزمون‌های ANOVA و tukey در مساحت 5/0 استفاده گردید.

یافته‌ها: یافته‌های استحکام خشکی در گروه‌های فیبر 0.14 مگاپاسکال و در گروه سیگنیو بدون فیبر می‌باشد 0.3 مگاپاسکال. در ترتیب شکاف‌دار، فیبر در استحکام خشکی نیز نقش مهمی دارد. در نهایت، دو گروه تقویت گروه سیگنیو و گروه اصلی در ترتیب شکاف‌دار استخوان، در انتظار استحکام خشکی سه نوع رزین کامپوزیت تقویت شده با فیبر باشد.

کلیه از نظر رزین‌های کامپوزیتی- استحکام خشکی- فیبر- خشک.

پژوهشگر: دکتر رامین مشرف، گروه آموزشی پویتریکا دندانی و مرکز تحقیقات دندانپزشکی پروفسور ترابی نزاد دانشگاه علوم پزشکی اصفهان

e-mail: mosharraf@dnt.mui.ac.ir

مقدمه

پویتریکا پارسیل ثابت که از رزین‌های کامپوزیتی تقویت شده با فیبر (FRC: فیبرهای پویتریکا جابجا) خوب برای پرداختن پارسیل ثابت سرامیک فلزهای استخوان است. در این مطالعه که از دقت و کاربردی‌ها مختلف انجام شده است، 5) کامپوزیت‌های تقویت شده با فیبر شامل فیبرهای دارای استحکام و ضریب کنش‌های بالا یا سطحی که در این مطالعه، کامپوزیت تقویت شده با فیبر ویژگی‌های برتری مانند نرم‌کننده‌ای کامپوزیتی تقویت شده با فیبر

خصوصیات ویژگی‌های شیمیایی خود در ترکیب از خصوصیات را به‌دست می‌آید که به‌طور کلی آنها را ایجاد می‌کند. (7–9) خصوصیات مناسبی رزین‌های کامپوزیتی تقویت شده با فیبر به طرف مختلف تحت تأثیر قرار می‌گیرند و عوامل مؤثر بر استحکام آنها عبارتند از: مویقت، تعداد و اختلاف فیبرها به ماتریکس کامپوزیتی، خصوصیات فیبرها، خصوصیات و جنب آن ماتریکس کامپوزیتی (7)، تغییرات زیادی در ویژگی‌های کامپوزیتی ترمیم‌های کامپوزیتی تقویت شده با فیبر

ذکر می‌شود.
تأثیر فیبر و نوع کامپوزیت در استحکام خشکی سه نوع رژین کامپوزیتی \ldots

شکل 1: مولد شکاف‌دار پلیکسی کلاس

شاهد از فیبر استفاده نشد. در ابتدا یک الیکسی در کامپوزیت مورد استفاده در فک مولد قرار داده و متراکم و به مدت چهل ثانیه با استرس گیرنده نیک کور دستی (Monitex ‘Blux, GT1200’, Monitex Industrial Co., Taiwan) LED کیور شد. عمل تابش از دو سمت راست و چپ به مدت چهل ثانیه تکرار گردید. تمام تابش‌های نورد در هوای آزاد انجام شد تا اتصال لایه‌های مختلف کامپوزیت به دلیل وجود اکسانز پدیز باشد. (30) پس از آن لایه دیگری از کامپوزیت بر روی لایه اول قرار داده و سطح آن برای لایه پلاس پوشانده شد و به همان صورت سهبار از جهات مختلف تحت تابش نورد قرار گرفت.

گروه‌های آزمایشی پس از قرار دادن یک الیکسی در کامپوزیت و تابش از سه چشمه مختلف شاخه یک الیکسی شد. بهترین 25 میلی‌متری از فیبر تقویت کننده (Fiber-braid, NSI Dental PTY., New south wells, Australia) کامپوزیت مورد استفاده آغشته شد و بر روی لایه کامپوزیتی اول کنار گذاشت و به مدت یک ثانیه کور شد. Non-impregnated فیبر مورد استفاده از مولی بشیرهای غیر آگشته (43).

روش بررسی

در این مطالعه تقریبی از نوع آزمایشگاهی، یک مولد شکاف‌دار پلیکسی کلاس با جمجمه‌ای 23/8 میلی‌متر به کامپوزیت ساخته شد که م بلیه‌ای مکعب مستطیلی کامپوزیتی را پویا در داخل آن نموده و سپس به راحتی از داخل آن خارج کرد. (51) هفت‌ماده و دو منوی از سه نوع کامپوزیت مورد استفاده (جدول 1) به هر گروه بر روی دسترس‌پذیر بود. در یکی از گروه‌های
جدول 1: کامپوزیت های مورد استفاده در مطالعه حاضر

<table>
<thead>
<tr>
<th>کارخانه سازنده</th>
<th>کامپوزیت مورد استفاده</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signum HiLite power</td>
<td>Belle Glass HP, Kerr/Sybron, Orange, Calif. USA</td>
</tr>
<tr>
<td>(Optilux Radiometer Model 100, Kerr Sybron,)</td>
<td>Signum; Heraeus Kulzer GmbH, Wehrheim, Germany</td>
</tr>
<tr>
<td>Gradia; GC Corp, Tokyo, Japan</td>
<td>6KLabolight; GC Corp</td>
</tr>
<tr>
<td></td>
<td>برای چشم تایش نور</td>
</tr>
<tr>
<td></td>
<td>در 300-500 نانومتر</td>
</tr>
<tr>
<td></td>
<td>به مدت بیست دقیقه در دمای 135 درجه و فشار شست</td>
</tr>
<tr>
<td></td>
<td>Belle Glass HP Curing Unit</td>
</tr>
<tr>
<td></td>
<td>به مدت بیست دقیقه در 500 نانومتر</td>
</tr>
</tbody>
</table>

روی فیبر قرار داده شد و پس از پوشاندن سطح آن با یک لاเย پلاکس گلاس به همان صورت گروه شاهد سه بار از جهات مختلف تحت تایش نور قرار گرفت.

صدرت تایش نور با استفاده لایت کیور دستی به کمک (RADIODENT (Optilux Radiometer Model 100, Kerr Sybron, (ادبکاندیزیو و مشخص شد که جد همکاری ها و مشخص نموده است لازم انتخاب نام یک سیگمن میانگین است قرار گرفت.

| سیگمن | سیگمانی
جدول ۲: میانگین استحکام خمshi نمونه‌های موجود در کرومیت آزمایشی (مکاباسکال)

<table>
<thead>
<tr>
<th>انتخاب معیار</th>
<th>میانگین</th>
<th>کرومیت</th>
<th>فیبر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9/۲۷</td>
<td>۷/۴۳/۲۰۰۳</td>
<td>۱۲/۸۵/۵۰</td>
</tr>
<tr>
<td></td>
<td>۱۵/۲۸</td>
<td>۷/۴۶/۳۱</td>
<td>۶/۳۱/۴۶</td>
</tr>
<tr>
<td></td>
<td>۱۰/۲۵</td>
<td>۹/۴۶/۳۲</td>
<td>۶/۳۱/۴۶</td>
</tr>
<tr>
<td></td>
<td>۱۷/۸۳</td>
<td>۱/۴۸/۳۲</td>
<td>۶/۳۱/۴۶</td>
</tr>
<tr>
<td></td>
<td>۲۱/۸۲</td>
<td>۶/۳۱/۴۶</td>
<td>۶/۳۱/۴۶</td>
</tr>
<tr>
<td></td>
<td>۱۰/۲۷/۰۱</td>
<td>۶/۳۱/۴۶</td>
<td>۶/۳۱/۴۶</td>
</tr>
</tbody>
</table>

در آنها ممکن است به صورت طولی یا عرضی فیبر شکست شوند. این شکست ممکن است در ماتریکس کامپوزیت، حد فاصل ماتریکس و فیبر و یا در داخل خود فیبر اتفاق بیفتد (24). در بررسی حاضر تمام شکست‌ها در ماتریکس کامپوزیت، و یا در حد فاصل ماتریکس و فیبر اتفاق افتاد.

در برخی از مطالعات مشخص شده که استحکام خم‌سیری ترمیم‌های کامپوزیت با کاهش درصد حجم فیبرها نسبت به حجم کل ترمیم افزایش می‌یابد، و به این ترتیب توصیه می‌گردد که فیبرها یکی از پایه‌های خالص فیبرهای کلاس در سمت کششی (دور از محل اعمال نیرو) قرار داده شوند.

(20) در این بخش، توجه به این نکته ضروری است که قرار دادن کامل این فیبرها در سمت کششی منجر به افزایش تنش‌های ترمیمی تشدید و در نتیجه افزایش تجمع پلاک شود. (25) در این مطالعه و برخی مطالعات مشابه، به منحنی دلیل و نیز به دلیل دنشواری در ساخت هسته‌ها و کاهش در ارتباط با گرمایش افزایش می‌یابد. به‌طور گیری، در این مطالعه به‌طور کلی، نتایج این تحقیق و استفاده‌های می‌تواند در مواد ایزوتروپیک نتایج این تحقیق (Simple beam theory) مست از نظریه میله ساده (26) بررسی کند. اما در مورد مواد غیر ایزوتروپیک به‌طور کلی، فرمول‌های تزویج شده با فیبر توجه به خشک بودن در نظر گرفته نیروهای بررسی امکان پذیر نیست. نحوه کاهش در این مطالعه به توجه به ضرایب پیچیده این میله‌ها در اثر فرآیندهای خم‌سیر و در اثر کشش حاصل

بحث

در این بررسی آزمایشگاهی استحکام خم‌سیری به‌طور کلی از سه نوع کامپوزیت تقویت شده رایج در ایران در دو گروه دارای فیبر و بدون فیبر بین اندام‌هایی قرار داده شدند. در این بررسی‌ها از آزمون خم‌سیری نتایج استفاده می‌شود. در مواد ایزوتروپیک نتایج این تحقیق (Simple beam theory) مست از نظریه میله ساده (20) بررسی کند. اما در مورد مواد غیر ایزوتروپیک به‌طور کلی، فرمول‌های تزویج شده با فیبر توجه به خشک بودن در نظر گرفته نیروهای بررسی امکان پذیر نیست. نحوه کاهش در این مطالعه به توجه به ضرایب پیچیده این میله‌ها در اثر فرآیندهای خم‌سیر و در اثر کشش حاصل
نتیجه‌گیری
بر اساس شرایط آزمایشگاهی این بررسی مشخص شد که تقویت با فیبر به نحو مشخصی سبب تقویت استحکام خشکی در نمونه‌های کامپوزیت تقویت شده با فیبر می‌شود و نوع کامپوزیت پوشانده هم می‌تواند عامل مؤثری در افزایش استحکام خشکی نمونه‌های کامپوزیت تقویت شده با فیبر باشد.

خمشی نمونه‌های کامپوزیتی می‌شود (۲۷) (در اظهارنظر پری‌دانشی اعدا کرده که نوع و ترکیب کامپوزیت پوشانده ممکن است نقش تعیین کننده‌تری در خصوصیات خشکی کامپوزیتی تقویت شده با فیبر داشته باشد که حتی در برخی موارد ممکن است از کاربرد فیبرین تیز متوقف شود. حتی در یک مطالعه مشخص شد که بهترین سطح و تطابق ضرایب کشسانی بین فیبرهای تقویت کننده و کامپوزیت پوشانده ممکن است در افزایش استحکام خشکی نمونه‌های کامپوزیت تقویت شده با فیبر است. (۲۸) (با توجه به وجود اختلاف متغیران بین تاماس گرنهای مورسبر در مطالعه حاضر می‌توان گفت که نتایج بررسی حاضر نیز Ellakwa و همکاران (۲۸) (را تایید می‌کند. از جمله مطالعات دیگری که نتایج بررسی Ellakwa و همکاران (۲۸) (را تایید می‌نماید می‌توان به بررسی‌های Van Heumen و همکاران (۲۹) اشاره کرد. در این بررسی نتایج گیری شده که استفاده از فیبر تنها در شرایط خاصی می‌تواند سبب افزایش استحکام خشکی نمونه‌های کامپوزیتی تقویت شده با فیبر شود و در افزایش استحکام خشکی نمونه‌های کامپوزیتی تقویت شده با فیبر نهمه گرگنابی‌های فیبرهای مهی یا با توجه به محدودیت‌های این مطالعه (استفاده از نمونه‌های بدلیلی شکل، کاربرد فیبرهای غیر آغازشته و...) پیشنهاد می‌شود. در این بخش از بررسی انجام تست روز ندندهای طبیعی خارج شده و یا تهی نمونه‌هایی که به شرایط بالینی نزدیک باشند انجام گردد. همچنین پیشنهاد می‌شود با استفاده از سراموسیلیک و پارک‌نیشی‌های دیگری که وارد تجربهی تا پیک مقياسه شود.

از آنجا که در این بررسی بدون فیبر کامپوزیت بر گروه‌های بار مرده و در گروه‌های دارای فیبر کامپوزیت گرانبای بافتی استحکام خشکی با قارچ کرده که استحکام خشکی کامپوزیتی بل کلاس به طور نهایی بیشتر از قارچ بوده اما اتصال و سازگاری میان کامپوزیتی گرانبای و فیبرهای تقویت کننده بیشتر بوده است. اهمیت این امر این است که در بیشتر مقالات گفته می‌شود که ظرفیت تحمل بار بیشتر از آنکه به میزان و حجم
REFERENCES

