Submitted: 22 Jul 2012
Accepted: 28 Sep 2014
ePublished: 28 Sep 2014
EndNote EndNote

(Enw Format - Win & Mac)

BibTeX BibTeX

(Bib Format - Win & Mac)

Bookends Bookends

(Ris Format - Mac only)

EasyBib EasyBib

(Ris Format - Win & Mac)

Medlars Medlars

(Txt Format - Win & Mac)

Mendeley Web Mendeley Web
Mendeley Mendeley

(Ris Format - Win & Mac)

Papers Papers

(Ris Format - Win & Mac)

ProCite ProCite

(Ris Format - Win & Mac)

Reference Manager Reference Manager

(Ris Format - Win only)

Refworks Refworks

(Refworks Format - Win & Mac)

Zotero Zotero

(Ris Format - Firefox Plugin)

J Iran Dent Assoc. 2012;24(3): 139-145.
  Abstract View: 19

Original

Comparison of Temperature Rise in Silorane-Based and Methacrylate-Based Composites Cured by LED and Argon Laser

Masomeh Hasani Tabatabaei, Mohammad Etrati Khosroshahi, Ayub Pahlavan, Sakineh Arami, Sara Valizadeh*
*Corresponding Author: Email: valizadeh.sara@yahoo.com

Abstract

  Background and Aim : Temperature rise occurs during photoactivation of dental composites due to the exothermic polymerization reaction and different curing units. The aim of this study was evaluation of temperature rise in two kinds of composites with different curing units .

  Materials and Methods : In this experimental study, five samples of each composite resin (Filtek Z250, Filtek P90) were placed in two-millimeter deep Teflon molds which were 4mm in diameter. Curing was done from top surface with LED, high power LED and argon laser and temperature was recorded by a thermometer placed under the samples. After reaching room temperature, samples were cured and the temperature was recorded again. The time of maximum temperature was also recorded. The data were analyzed by two-way ANOVA and Tukey HSD .

  Results : Composites and curing units had statistically significant influence on the temperature rise (p<0.001) Silorane-based composites showed significantly higher temperature rise than methacrylate-based ones. A significantly lower rise in temperature occurred when illuminationwas performed by argon laser. There was no significant difference in temperature rise between the two types of LEDs. The type of composite had no effect on the time of maximum temperature and in all samples the maximum temperature was recorded at the beginning of irradiation . 

  Conclusion : Silorane-based composites showed higher temperature rise than methacrylate-based ones. Argon laser revealed less heat than LEDs. The maximum temperature rise was recorded at the beginning of irradiation .

 

First Name
Last Name
Email Address
Comments
Security code


Abstract View: 20

Your browser does not support the canvas element.


PDF Download: 0

Your browser does not support the canvas element.